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Use interpolation methods that allow evaluating and 
enhancing the reliability of your maps.  

The objective of any serious mapping is to obtain a realistic and reliable image of the studied 
phenomenon. This can be done by working with a lot of data samples, regularly distributed over 
the area of interest, each mapping algorithm being efficient in such a context. In many cases, 
samples are unfortunately rare and irregularly distributed, due to geological or physical constraints 
which limit the possibility to get samples and/or to economic constraints. It is then of primary 
importance to apply mapping algorithms that are able to mix different sources of information, 
including fuzzy data.  

This white paper shows you how the geostatistical approach based on kriging, with all its 
variations, is the solution for a high quality and reliable mapping even in complex cases. It details 
the different methods for assimilating various sources of information, taking into account the 
reliability of each source and how the uncertainty associated with any mapping result can be 
estimated and reduced. 

Geovariances has been applying this geostatistical approach for more than twenty years in the 
various contexts, from geological modelling in Oil &Gas and Mining industries to pollution mapping 
or remediation projects of sites contaminated with radionuclides. 

 

 



 

 

Aim of mapping algorithms 

Mapping consists in determining the unknown value of a given 
parameter at a given location, results being represented in 2D or 
3D maps, studied parameter values distribution being displayed by 
mean of level contours or colormaps. In the past, this operation 
was done by hand. Nowadays, it is made with specialized software 
in which many different estimation algorithms have been 
implemented. 

The aim of this document is to provide an overview of the main 
geostatistical estimation algorithms that can be used in difficult 
conditions, when data samples are rare and irregularly distributed 
in space. It shows how the use of auxiliary data sources can help 
enhancing the results and reducing the uncertainty. A special 
focus is put on the pros and cons of each method and on their 
application conditions. 

Some application examples of the most efficient algorithms and 
workflows are presented.   

The main strength of geostatistical techniques is their ability to 
take into account the spatial structure of the studied phenomenon 
(by mean of the variogram). Another advantage is the fact that 
the uncertainty attached to each result is always provided.  
Several algorithms are available, all based on Kriging or on 
geostatistical simulation algorithms conditioned to data by kriging. 

The most common methods are presented below. For clarity, they 
can be regrouped into few categories: 

Kriging with a multivariate model 

Cokriging 

Cokriging estimates are calculated by making a linear combination 
of neighbour samples, combining all the measured variables. With 
two variables Z and T, it is given by the formula: 
 

 

The cokriging estimate is designed to ensure that the mean of the 
estimation error is null (non-bias condition) and that the variance 
of the estimation error is minimal (optimality condition). 

Cokriging requires a multivariate model of correlation 
(linear model of coregionalization). It means that the variograms 
of each variable and all the cross-variograms must be calculated 
and fitted within a consistent mathematical framework. Usually, 
when variables show a high correlation, all the variograms and 
cross-variograms may be fitted with the same components. 
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Are you confident in 
the quality of your 
maps?  

With multivariate 
geostatistical 
techniques, benefit 
from all available 
information.  



 

 

 
Cokriging corresponds to an optimal use of correlated data. It 
must be noted that all the variables play the same role in this 
method.  
 
It can be applied only in stationary environments (no spatial trend 
in the data).  

Collocated cokriging 

Collocated cokriging is a variation of cokriging which is optimized 
for the case where one of the variables is known at target points. 
For example, it is useful when one variable is known at well 
locations and the other one is provided as a full map, the 
interpolation being made at each node of this map. It is frequently 
used for estimating Porosity from well data and a seismic 
impedance map. 
 
It is often difficult to fit a bivariate model on variograms and 
cross-variograms when data are sparse. When one of the 
variables is dense, known at each node of the target grid, it might 
be interesting to calculate the model from this dense dataset and 
make an assumption on the similar behaviour of the other 
variable. This method is commonly used in collocated cokriging, 
the assumption being called the Markov-Bayes assumption. With 
two variables Z and T, the bivariate model is calculated from the 
univariate model of the dense dataset using the following 
relationships: 
 

 
 

Application 

Issue: Porosity mapping with few well data 

In the example, a porosity map derived from seismic data is 
available, but only few wells. At the field scale, the well data 
spatial distribution is not regular enough to guarantee the result 
quality.  

Solution: Collocated cokriging with well data and the auxiliary 
source map. 

Result: Consistent map taking benefit of all data sources (Fig. 1) 

With multivariate 
geostatistical 
techniques, refine 
your maps and 
reduce their 
uncertainty.  



 

 

 

Figure 1: Comparison between Porosity maps with well data only (left) 
and well data + auxiliary map (right). 

Kriging with a univariate model and various data 
sources 

Kriging with external drift 

Kriging with external drift (KED) is the preferred industry 
solution to combine well and seismic derived data, as it is easier to 
implement than cokriging and can be applied in presence of 
regional trends (non-stationary context). 

With KED, variables are not equivalent. There is a primary 
variable to be estimated, with the help of secondary 
variables. We assume that the secondary variables (e.g. seismic 
information) provide low frequency information about the primary 
variable, with the high frequencies contained in the residuals. The 
KED system contains a linear transformation to the seismic data 
and a variogram of residuals. They are combined to provide, in 
one step only, an estimate that matches the well data and is 
consistent with the non-stationary trend coming from the seismic 
data. 

In the external drift method, this low frequency trend (Figure 2) is 
included in the kriging system as a drift, therefore as a 
universality condition, not as an additional variable contributing in 
the estimation (as in collocated cokriging). 

 
Figure 2: Schema where the signal Z(x) is decomposed into a low frequency 

component (the drift) and high frequency residuals (R(x)) 

Kriging Collocated



 

 

In a Kriging with external drift, the model is non-stationary if the 
drift is itself non-stationary, but its covariance part is stationary 
(the variogram of the residuals). Therefore, the variable is 
estimated with a model combining both stationary and non-
stationary parts. These techniques require the computation and 
the fitting of a non-stationary spatial correlation model. 

Kriging with Bayesian drift 

Kriging with Bayesian drift can be considered as a generalization 
of KED.  Computing a reliable trend may be difficult in the case of 
sparse data. Bayesian kriging (Omre 1987) allows accounting 
for prior knowledge in such cases. In this framework, unknown 
drift coefficients are considered as random variables and assumed 
to have a Gaussian joint distribution. Within the Bayesian 
framework, the distribution of these variables can be provided by 
the geoscientist (a Gaussian distribution defined by the mean and 
standard deviation of the linear regression slope coefficient and 
the correlations between them). As for KED, the drift functions 
and the covariance of the residuals have to be provided (non 
stationary spatial model). The covariance is a challenging part as 
the trend is not yet known at this stage. It has to be inferred from 
prior knowledge. 

Applications 

Application 1: Time-to-Depth conversion 

Issue: Calculation of a depth map from well data and a time 
map 

In the example, a time map is available for a geological horizon. 
Depth markers for this horizon are available at wells. It is 
assumed that velocity is homogeneous in the area of interest.  

Solution: KED using depth at wells as main data and the time 
map as an external drift. 

Result: A map in depth honoring well data, with more or less the 
same shape as the time map 

 

Figure 3: Time-to-depth conversion with KED 
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Note: if velocity is varying a lot in the area of interest, the same 
method can be applied to velocity, the main variable being the 
velocity at wells and the auxiliary map (or cube) being the seismic 
velocity. It leads to a velocity cube consistent with seismic, 
calibrated to well data. 

Application 2: Smooth petrophysical properties transition 
across facies borders 

Issue: Mapping of a property inside a facies body, 
accounting for a border effect 

A smooth transition of petrophysical properties across facies 
borders has been observed. It leads to properties distribution 
which depends on the distance to the edge of geobodies. 

Solution: KED using petrophysical properties at wells as main 
data and the distance to geobody border calculated by Isatis as an 
external drift. 

Result: A map of petrophysical properties inside facies which 
honor well data and varies smoothly from the geobodies center to 
the edge. When applied to each facies, this method leads to 
smooth Petrophysical properties transition.  

 

                                        Figure 4: Border effect modeling with KED 

Kriging with datasets of varying accuracy 

Input data for cokriging or KED may be affected by uncertainty. 
For example, some samples along the wells may be affected by 
measurement errors, or some data coming from different seismic 
sections or cubes may be of different accuracy. In such cases, it is 
important to account for such uncertainties in the estimation 
process. There are two ways for doing this: 

• Defining a variance associated to each sample. It corresponds 
to the (co)kriging with measurement error. 

• Defining samples with an interval instead of a single value. It 
corresponds to the conditional expectation with inequalities. 

 



 

 

Kriging with variance of measurement error 

In this (co)kriging variation, kriging weights account for data 
uncertainty, higher weights being given to certain data. 

It is considered that one of the input data variables can be 
considered as polluted by some particular type of noise, which is 
defined by its variance at each sample location. The noise is not 
taken into account while fitting a model on the data variable. 
Therefore, the spatial correlation analysis must be achieved on a 
clean subset of the polluted variable. In practice, this variance 
may come from a measurement error or from a user defined 
uncertainty associated with various sources of data. It is included 
as an additional nugget effect along the diagonal of the variance-
covariance matrix which is part of the kriging system. This method 
is detailed in Chiles and Delfiner 2012. 

Conditional expectation with inequalities  

In this method, fuzzy data are defined by intervals of values. 
The procedure allows replacing inequalities (soft data) defined as 
intervals of values by the conditional expectation of the target 
variable. The method is detailed in Langlais 1990 and Chiles and 
Delfiner 2012. 

Calculation is made in two steps: 

• Hard and soft data are first transformed into gaussian data 
and a variogram model is calculated on hard gaussian data. 

• The conditional expectation is then calculated where 
inequalities are defined. The method consists in running 
simulations in order to generate a set of values at each 
sample location with inequalities, which are consistent with 
the variogram model and with the hard and soft data. A 
standard deviation reflecting the amplitude of variation of 
simulated values is associated to each conditional 
expectation. 

Usually, conditional expectation with inequalities results are 
included in mapping workflows by kriging, using the raw hard data 
and the conditional expectation values at soft data locations, 
taking into account the uncertainty attached to these soft data. 

Applications 

These kriging options which account for fuzzy data can be applied 
with any variation of kriging (cokriging, collocated cokriging, KED, 
etc...). They have many useful practical applications. 

Application 1: Extrapolation control  

Issue: Lack of data leads to unrealistic extrapolation 
results and kriging artefacts 



 

 

Solution: Add soft data points 

Dummy data points can be added, with a user defined uncertainty 
attached to each point. These soft data points correspond to the 
studied variable, which implies that a simple univariate model is 
required. The “Kriging with measurement error” algorithm is used. 

Result: User controlled extrapolation 

The soft data distribution, values and attached uncertainty are 
defined by the geologist, which allows introducing specialists’ 
knowledge. This method needs weaker hypotheses than adding 
dummy data considered as hard data. Kriging artefacts are 
significantly reduced. 

 Figure 5: Controlling extrapolation with uncertain soft data. 

Application 2: Horizon mapping mixing data sources 

Issue: Mixing data sources of different resolution 

In the example, different geophysical data sources are available, 
but few wells. Depth maps of different accuracy deduced from 
each single data source are available, but using few hard data with 
several auxiliary collocated variables leads to artefacts.  

Solution: Auxiliary source maps sampling + Kriging with 
measurement error 

To compensate for the lack of hard data, auxiliary depth maps 
calculated from each geophysical data source can be sampled, a 
variance being attached to each sample. This variance depends on 
the data sources resolution and reflects the uncertainty. Available 
well data (no uncertainty) plus additional samples (with 
uncertainty attached) are merged to estimate depth by kriging 
with the “measurement error”. 

Result: Consistent maps taking benefit of all data sources  



 

 

  

Figure 6: Mixing sources of data of different precision. 

Application 3: Horizon mapping using horizontal wells trace 

Issue: Optimizing the use of horizontal well traces  

Solution: Define inequalities 

Intercepts between horizontal well trace and horizons are hard 
data. Other well trace points are above or below horizons and can 
be used in the “Conditional expectation with inequalities” 
algorithm. Conditional expectation results are then used as soft 
data in kriging with measurement error, with an attached 
uncertainty. 

Result: Enhanced maps of layer limits 

 

Figure 7: Definition of inequalities along an horizontal well trace. 
The horizon in red is to be estimated, data points in blue are below it, 

data points in green are above it. 

Local Geostatistics 

The parameters of each component of the fitted variograms 
and cross-variograms can vary in space, defining a second 
level of auxiliary information that can be used with all the already 
mentioned (co)kriging techniques. In other words, it is possible to 
define local ranges, sills, main axis orientation for all the 
components of the model. 

Here, the auxiliary information is not related to data, but to the 
variogram model. 

There are several ways for calculating local variogram parameters: 

• By zones, with local variograms and cross-variograms fitting; 



 

 

• On a point by point basis, using cross-validation approach 
with an optimization algorithm.  

Local Geostatistics allows significant mapping enhancements in 
complex structures. 

Application 

Issue: Mapping of topographic structures with various 
orientations 

In the example, an elevation map includes several features of 
various orientations. The use of a main (global) orientation to fit 
the variogram model leads to local artefacts.  

Solution: Kriging with local variogram parameters. 

Result: Optimal map  

 

Figure 8: Local variogram parameters 

 

Figure 9: Comparison between kriging with global 
and local variogram parameters 
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Conclusion 

Mapping results can be significantly enhanced by using 
auxiliary variable correlated with the main variable of 
interest. A lot of methods are available, making possible to 
design workflows suited to each set of available variables, to each 
data pattern and to each geological context. 

The great variety of geostatistical estimation algorithms allows 
taking benefit of various data sources and to account for each 
sample in a way which is consistent with its accuracy. All these 
methods lead to an uncertainty reduction.  

Isatis, Geovariances software solution for geostatistics, 
enables implementing the above methodologies. In addition, Isatis 
allows combining the different options that have been detailed. For 
example, it is possible to make a cokriging with the “measurement 
error” option activated for a data subset and local variogram 
parameters. 

It must be noted that most of the geostatistical mapping 
methods give the full control of the results to the geologist, 
through the choice of data uncertainty and auxiliary trend maps.  
Such choices must be driven by the analysis of the geological or 
topographical environment. 

Our expertise 

Geovariances has 30 years’ experience in developing mapping 
methods into Isatis, its leading-edge geostatistical software 
solution, and in applying them to reservoir modelling for Oil and 
Gas companies worldwide. Isatis is unique in providing all the 
methodologies described earlier. 

Geovariances collaborates with worldwide research leaders to 
develop innovations in Isatis, in various domains. 

Geovariances is dedicated to applied geostatistics and has set the 
standards in geosciences, providing the Oil and Gas industry with 
premium software and consulting solutions. The company can 
provide a unique expertise through both its French, Australian and 
Brazilian offices. 

For more information 

Let us help you design your tailored mapping workflow for more 
realistic and accurate results. 

Contact our consultants: consult@geovariances.com. 

Who is Geovariances? 

Geovariances is a specialist 
geostatistical software, 
consulting and training 
company. We have over 45 
staff, including oil consultants 
and statisticians. 

Our software Isatis, is the 
accomplishment of 25 years of 
dedicated experience in 
geostatistics. It is the global 
software solution for all 
geostatistical questions. 

Unique expertise 

Geovariances is a world leader 
in developing and applying new 
and practical geostatistical 
solutions to the oil & gas 
industry. We have gained trust 
from the leading companies. 

Geovariances 
49 bis, av. Franklin Roosevelt 
77215, Avon Cedex 
France 
T +33 1 60 74 90 90 
F +33 1 64 22 87 28 

Geovariances Pty Ltd 
Suite 3, Desborough House 
1161 Hay Street 
West Perth, WA 6005 
Australia 
T +61 8 9321 3877 
 
www.geovariances.com 
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