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Taking into account secondary information is of key importance in numerous Oil & Gas workflows 
(e.g. combining seismic times with well picks, using acoustic impedance maps to predict 
porosity...). In the presence of trends, kriging with Bayesian drift bridges the gap between the 
traditional kriging with external drift (KED) and a simple kriging of the residuals (SK), allowing a 
better trend control. 

Kriging methods are based on the dichotomy of the variable which can be written as the sum of a 
trend and a stationary residual. With Bayesian kriging (BK), the prior knowledge gained from 
similar fields or physical characteristics about the trend shape is used. This is very useful when the 
data are sparse and traditional geostatistical data analysis may lack robustness. The method 
enables control of the correlation between coefficients, as well as verification of the local posterior 
behavior of the trend coefficients when data are numerous. It has wide ranges of applications, 
notably in depth conversion workflows.  



 

 

Overview  

Trend is a matter of scale. Geology can be stationary at regional 
scale but not at the local scale or field scale. There is frequently a 
trend in geology at the scale of the study (a dome, an anticline, 
etc.). External information about this trend is sometimes 
available, for instance from seismic. Classically, this external 
information can be integrated in two ways. First, linear regression 
can be used to derive a trend model and estimate residuals 
around it with Simple Kriging (SK). Kriging with External Drift 
(KED) provides an alternative which does not require the explicit 
distinction between trend and residuals. If there is an uncertainty 
on the drift model (e.g. due to too sparse data sampling) 
Bayesian Kriging (BK) approach can be used in order to account 
for prior knowledge about the trend. The BK result sits between 
the SK and the KED approaches. This paper shows how to include 
uncertainty in the drift model and how it affects both the estimate 
and its related uncertainty. 

Methodology 

Trend modeling  

The idea of trend modeling is to find a polynomial function (linear, 
quadratic, etc.) from the observed data that would explain the 
“shape” of the main variable (figure 1). The trend parameters can 
be geographical (x, y, z) or external properties. In this latter case 
they are called external drifts. For instance a linear relationship 
between a variable v and a variable f1 means that it is possible to 
predict v from f1 or to use f1 as an external drift to predict v. This 
scenario is common in time to depth conversion where TVD can be 
predicted for instance from TWT (figure 1).  

 

Figure 1: scatter diagram between Depth vs 
TWT at well locations. 

 1100  1150  1200  1250  1300  1350 
TWT from seismic (m)

-2000 

-1900 

-1800 

-1700 

-1600 

-1500 

-1400 

De
pt

h 
(m

)

rho=-0.993

In the presence of 
trends, kriging with 
Bayesian drift bridges 
the gap between 
traditional Kriging 
with External Drift and 
Simple Kriging of the 
residuals. 



 

 

To be meaningful, the relationship between the variables should 
rely on data points where both variables are known (i.e. at the 
well location). 

Non-stationary modeling in Isatis provides a way of testing several 
trend scenarios and ranking them to help deciding which one 
might be the most appropriate choice. 

Non-stationary geostatistics  

To deal with non-stationarity the variable v(x) can be decomposed 
into a trend and a stationary residual r(x) zero mean. 

v(x) = m(x) + r(x) 

This decomposition is the one behind the UK system (Matheron, 
1970).  

In case the trend is modeled explicitly from the polynomial drift 
equation, residuals can be computed and estimated using Simple 
Kriging (SK). The trend has to be estimated using a unique 
neighborhood, resulting in constant trend coefficients. The 
variogram of the residuals can be modelled from the experimental 
variogram of the residuals or inferred by the user. Estimated 
residuals are added back to the trend to get a final result that ties 
to the wells. 

In the KED case, the basis drift functions are defined externally 
through auxiliary variable fl instead of monomials based on the 
geographic coordinates. In case of numerous data, using a moving 
neighborhood allows accounting for local variations in the trend. 
As for SK, KED requires the knowledge of the covariance or 
variogram part from the residuals and the drift terms fl. For a 
unique neighborhood the residuals can be computed using Isatis 
Global Trend Modeling, but with a moving neighborhood the trend 
residual covariance needs to be inferred. 

Computing a reliable trend may be difficult in the case of sparse 
data. Bayesian kriging (Omre 1987) allows accounting for prior 
knowledge in such cases. In this framework unknown coefficients 
al are considered as random variables Al and assumed to have a 
Gaussian joint distribution. Within the Bayesian framework the 
distribution of these variables can be provided by the geoscientist 
(a Gaussian distribution defined by the mean and standard 
deviation of the Al and the correlations between them). As for SK 
or KED, the drift functions and the covariance of the residuals 
have to be provided. The covariance is a challenging part as the 
trend is not yet known at this stage. It has to be inferred from 
prior knowledge. 

  

Non-stationary 
geostatistics 
provides solutions to 
estimate data with 
trends. 



 

 

Comparison of the techniques 

Mathematically, there is a link between the three approaches 
presented here (SK, BK, KED). The SK approach is a Bayesian 
kriging with no uncertainty on the priors (standard deviation is 0 
for each Al). As can be seen from figure 2, the uncertainty only 
comes from the residuals spatial configuration and covariance. 
When the uncertainty on the priors is maximal (standard deviation 
goes to infinity) the BK system converges to the KED system. In 
any intermediate situation the BK gives an intermediate answer. 

 

Figure 2: Depth estimation (top) and standard deviation (bottom) for 
three approaches: SK (left), Bayesian (middle) and KED (right). For 

the three scenarios the same residuals covariance, drift function 
and only 5 wells out of 87 are used. The prior for the trend 

coefficients are 1.4 and -850 with a medium standard deviation 
(0.05 for the slope and 100 for the intercept). The BK result gives 
an intermediate answer between the SK and the KED approach. 

Simulations 

The three systems can be simulated. The degree of uncertainty 
depends on the estimation error. In the SK approach, as full 
confidence is given to the trend, the uncertainty around the mean 
is small (compared to the other two). In the KED, as the trend 
coefficients are unknown the uncertainty is higher.  

In the BK system the uncertainty on the drift can be estimated by 
deriving posterior distributions of drift coefficients. A serie of 
coefficients can be drawn from this distribution. They are used to 
compute the residuals which are then simulated. The drift is also 
computed over the whole field from the drawn drift coefficients 
and the final simulations obtained by adding the simulated 
residuals to it. As a consequence, the uncertainty about the trend 
coefficients might lead to an increased variability of the BK 
simulations.  

  



 

 

Illustrations 

The illustration is taken from the Non Stationary & Volumetrics 
case study of Isatis. The dataset contains a seismic horizon in 
depth for the top structure, and 87 well markers for reservoir tops 
in depth. It contains also reservoir thickness at the well locations 
(figure 3). The correlation coefficient between the seismic 
attribute and the well is 0.984 which suggests that using the 
seismic depth to predict the true depth might be a good choice to 
make. Now using a trend is a strong assumption as it would 
greatly reduce the overall uncertainty. It is therefore very 
important to ensure that all the data used to compute the trend 
are clean. Any artifact, footprint, mispick would affect the quality 
of the conversion. Looking at possible outliers is recommended as 
it could impact the linear regression. This analysis shows that the 
points diverging the most from the trend line are local clusters and 
correspond to possible anisotropy or possible picking or migration 
issue. The divergence can sometimes reach 20m. This issue will be 
ignored in this tutorial as to resolve it would involve looking at the 
seismic and velocity field. Figure 4 shows the trend computed 
using the linear regression equation Well = 1.42*Seismic - 
857.92. Also displayed are the residuals at the well locations, their 
histogram and experimental and model variogram. 

With the variogram model of the residuals it is now possible to 
apply the 3 techniques described above (SK, KED and BK). For 
the BK system, as the 87 wells were used, the prior drift 
coefficients are taken to be very close to the ones estimated 
globally on the cross-plot; the slope and intercept are not allowed 
to vary much (only 6% and 1% respectively). This explains the 
similarity between the SK and BK approach. For all methods the 
same moving neighborhood is used. This allowed the KED to 
compute (or more precisely to filter) local drift. Artifacts can be 
noticed in the top right corner where the uncertainty is the highest 
(away from control points). Using a unique neighborhood leads to 
similar results between all three methods (the results are not 
presented here). 

  

Using a trend is a 
strong assumption as 
it would greatly 
reduce the overall 
uncertainty. It is 
therefore very 
important to ensure 
that all the data used 
to compute the trend 
are clean. 



 

 

 

Figure 3: Seismic horizon depth (m) and well marker depth (m) 
of the top reservoir are displayed on the top left corner. The 

relationship between the two is displayed on the top right 
corner, showing a good linear relationship with a correlation 

coefficient of 0.984. Points away from the trend line are 
highlighted in red at the bottom, on the scatter plot (left) and 

basemap (right). 

 

 

Figure 4: Trend computed using the linear regression equation 
Well = 1.42*Seismic  -857.92 (top left corner). Also displayed are 

the residuals at the well locations (bottom left corner), their 
histogram (top right corner) and experimental and model 

variograms (bottom right corner). 



 

 

 
Figure 5: The estimation (top) and the standard deviation 

(bottom) are shown for three methods: SK (left), BK (middle) and 
KED (right). For the BK system, as the 87 wells were used, the 

prior drift coefficients are taken to be very close to the ones 
estimated on the cross-plot; the slope and intercept are not 
allowed to vary much (only 6% and 1% respectively). This 

explains the similarity between the SK and BK approach. For all 
methods the same moving neighborhood is used. 

Another interesting test is to check what happens when the well 
information is sparse. To do that we take the same dataset but 
only select 5 wells out of 87. Two scenarios are tested, one where 
the sampling can still be informative about the “real” trend and 
one where it is not (figure 6). With a so sparse data sampling the 
variogram is meaningless and needs to be inferred. 

 

Figure 6: Two test scenarios: one where the trend can be 
considered as moderately informative (left) and one where it is 

not informative at all (right). 

Figure 7 shows the estimation results. Obviously with so few data 
a unique neighborhood need to be selected. The covariance part is 
the same as the one used previously. In reality it would have to 
be inferred from prior knowledge. The drift coefficients chosen for 
the priors are -1500 for the intercept and 1.4 for the slope which 
is consistent with the field information using all 87 wells. The prior 
coefficients are sometimes selected to be moderately uncertain 
(an STD of about 15% of the coefficient value) or uncertain (an 

This result is 
intuitive and shows 
how prior knowledge 
can be used and 
blended with the 
observed information 
using a BK approach. 



 

 

STD of about 50% of the coefficient value). When the trend is 
informative and consistent with the priors, the results converge to 
the 87 wells scenario for both types of prior uncertainties. When 
the trend is non-informative, the results converge to the 87 wells 
scenario only if the prior are accurate and set with certainty. This 
result is intuitive and shows how prior knowledge can be used and 
blended with the observed information using a BK approach. 
 

 

 

Figure 7: Estimation results (first row) and estimation error 
(second row) for the informative trend case scenario. 

Estimation results (third row) and estimation error (fourth row) 
for the non-informative trend case scenario. The first column 

is for moderately uncertain priors and the second for uncertain 
priors. Prior values and covariance are chosen to be in good 

agreement with the field information. 

Non-stationary 
geostatistics systems 
can be simulated to 
quantify the 
uncertainty in the 
model. 
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Lastly all methods can be simulated and used to compute GRV 
uncertainty. As an example 100 Bayesian drift simulations using 
the same settings as the ones used in figure 5 are run. 100 
simulations of the reservoir thickness are also run. Isatis 
Volumetrics and spill point module is used to report the GRV PDF 
within the green polygon and output a map of the mean reservoir 
thickness (figure 8). 

 

Figure 8: First realization with Bayesian drift out of 100 (top left corner). 
Converted depth CDF of the top reservoir for a point located in the 
middle of the black circle (top right corner). GRV PDF (bottom left 
corner) within the green polygon and map of the mean reservoir 

thickness (bottom right corner) computed from Isatis Volumetrics and 
spill point module. 

Our expertise 

Geovariances has more than 15 years’ experience in geostatistical 
time to depth conversion projects. Numerous studies have been 
carried out for major Oil & Gas companies. We can provide a 
unique expertise through both our French and Australian offices. 

For more information 

Let us help you in your time to depth conversion workflow. 

Contact our consultants at consult-oil@geovariances.com. 

Who is Geovariances? 

Geovariances is a specialist 
geostatistical software, 
consulting and training 
company. We have over 45 
staff, including specialist oil 
consultants and statisticians. 

Our software, Isatis, is the 
accomplishment of 25 years of 
dedicated experience in 
geostatistics. It is the global 
software solution for all 
geostatistical questions. 

Other technical specialties 

Geovariances is a world leader 
in developing and applying new 
and practical geostatistical 
solutions to oil operations. We 
have strong experience in 
applying geostatistics from 
seismic data QC  to reservoir 
characterization and have 
gained trust from some of the 
biggest international 
companies. 
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