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Abstract
Some engineers are skeptical of statistical, let alone geosta-
tistical, methods. Geostatistical analysis in reservoir charac-
terization necessitates an understanding of a new and often 
unintuitive vocabulary. Statistical approaches for measuring 
uncertainty in reservoirs is indeed a rapidly growing part of 
the best-practice set of methodologies for many companies. 
For those already familiar with the basic concepts of geosta-
tistics, it is hoped that this overview will be a useful refresher 
and perhaps clarify some concepts. For others, this overview 
is intended to provide a basic understanding and a new level 
of comfort with a technology that may be useful to them in 
the very near future. 

Introduction 
Geoscientists and geological engineers have been making 
maps of the subsurface since the late 18th century. The evo-
lution of our ability to predict structure beneath the surface 
of the Earth has been a complex interaction between quanti-
tative analysis and qualitative judgment. Geostatistics com-
bines the empirical conceptual ideas that are implicitly sub-
ject to degrees of uncertainty with the rigor of mathematics 
and formal statistical analysis. It has found its way into the 
field of reservoir characterization and dynamic flow simula-
tion for a variety of reasons including its ability to success-
fully analyze and integrate different types of data, provide 
meaningful results for model building, and quantitatively 
assess uncertainty for risk management. Additionally, from a 
management point of view, its methodologies are applicable 
for both geoscientists and engineers, thereby lending itself to 
a shared Earth model and a multidisciplinary workforce. 

Why Geostatistics?
Fig. 1 depicts two images of hypothetical 2D distribution 
patterns of porosity. Fig. 1a shows a random distribution of 
porosity values, while Fig. 1b is highly organized, showing a 
preferred northwest/southeast direction of continuity. While 
this difference is obvious to the eye, the classical descriptive-

summary statistics suggest that the two images are the same. 
That is, the number of red, green, yellow, and blue pixels 
in each image is the same, as are the univariate statistical 
summaries such as the mean, median, mode, variance, and 
standard deviation (Fig. 1c). Intuitively, as scientists and 
engineers dealing with Earth properties, we know that the 
geological features of reservoirs are not randomly distrib-
uted in a spatial context. The reservoirs are heterogeneous 
and have directions of continuity in both 2D and 3D space 
and are products of specific depositional, structural, and 
diagenetic histories. Strangely, that these two images would 
appear identical in a classical statistical analysis is the basis of 
a fundamental problem inherent in all sciences dealing with 
spatially organized data. Classical statistical analysis inad-
equately describes phenomena that are both spatially con-
tinuous and heterogeneous. Thus, use of classical statistical 
descriptors alone to help characterize petroleum reservoirs 
often will result in an unsatisfactory model. 
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Fig. 1—Hypothetical distribution patterns of poros-
ity for (a) randomly organized data and (b) highly 
organized data. Basic statistical metrics for the two 
images, which are identical, are shown in (c).



Key Benefits to Petroleum Reservoir Engineering
It is important to state that a geostatistical approach to 
reservoir characterization and flow modeling is not always 
required and does not universally improve flow-modeling 
results. However, there are several benefits for reservoir engi-
neers when it is deemed appropriate. 

• The first and most obvious benefit is that the technol-
ogy is numerically based. The products are numerical, thus 
addressing a traditional barrier faced when introducing qual-
itative geologic data (e.g., depositional facies) into a flow-
simulation model. Therefore, the final product is a volume 
of key petrophysical properties constrained to a set of facies 
that realistically depict the geological conceptual model 
and honor the well and seismic data. This result by itself 
can reduce the time required for effective history matching 
during flow simulation. Further, it is possible for the geosta-
tistical static model to honor well tests and production data, 
which also reduces the time for history matching. 

• Another benefit is in the shared responsibility for the con-
struction of the static model, the input to the flow simulator. 
Not too many years ago, the static model was constructed 
by the engineer. That is, the integration of the geological, 
petrophysical, and geophysical data was performed by the 
engineer in preparation for flow simulation. This integration 
required a relentless and often unsuccessful effort to under-
stand both conceptually and numerically the input data 
from each discipline. A particularly troublesome area was 
to understand the importance of the conceptual geological 
model because it required knowledge of the distribution of 
petrophysical properties and of depositional systems. Today, 
the responsibility of delivering a useful numerical model 
incorporating descriptive geological information rests on a 

group of domain experts constituting a team, rather than 
one individual. 

• Geostatistically based static models that character-
ize reservoir heterogeneities are capable of improving the 
mechanistic understanding of fluid flow. This understand-
ing is particularly true in complex heterogeneous situations, 
such as the presence of strong contrasts in permeabil-
ity at multiple scales. Further, geostatistics has improved 
flow-simulation technology by challenging some of the 
theoretical foundations behind flow simulators (King and 
Mansfield 1999).

• Generally, petroleum engineers find it easier to quantify 
the variation in production forecasts by use of a geostatisti-
cal-simulation model to describe heterogeneities. Selecting 
extreme images that are based on simplified fluid-flow 
simulations (like streamlines) is acceptable for water cuts 
(mobility ratios up to 100), hydrocarbon production before 
breakthrough, identifying poorly swept regions (qualita-
tive analysis of flow behavior), and studying the produc-
tion forecasts from each image (realization) to quantify the 
range of possible hydrocarbon production (Guerillot and 
Morelon 1992).

This paper attempts to articulate both the practical use 
and common misconceptions of geostatistics applied to 
petroleum-reservoir characterization. Given the mandate for 
briefness, the material discussed here is presented more as an 
“armchair” discussion than as a formal synthesis of geostatis-
tical principles. Thus, the detailed mathematics and formal 
statistical underpinnings are not presented. This material 
is presented in the context of a typical reservoir-character-
ization workflow broadly covering five basic steps shown 
in Fig. 2: (1) exploratory-data analysis (EDA), (2) spatial 
modeling, (3) kriging, (4) conditional simulation, and (5) 
uncertainty analysis. Scaling up, the process of coarsening 
the final high-resolution geological model in preparation for 
flow simulation, is not discussed. 

Data Analysis
While EDA is not specifically geostatistical, it is a prerequi-
site for ensuring data integrity and is the first critical step 
in reservoir modeling. EDA consists of scrutinizing the data 
for errors, calculating the descriptive statistics (univariate 
statistics) for each variable, and identifying how the variables 
relate to one another (multivariate statistics). Performing 
EDA requires that the data be digital and placed in the con-
text of a conceptual geological model.

These tasks are not trivial, and experience has shown that 
between 50 and 75% of the total time allocated to a reservoir-
characterization project is consumed by preparing the data. 
Further, in polling hundreds of participants from reservoir-
modeling classes and reviewing dozens of projects world-
wide, it can be stated confidently that the bulk of this time is 
spent finding and cleaning the data before analysis. Why so 
much time is spent in this task and how it can be streamlined 
is beyond the scope of this paper. However, the effort involved 
is crucial if a reliable reservoir model is to be constructed. 
Managers and project leaders would do well to assess the 
allocated time for EDA accurately in their reservoir-modeling 
efforts, because it is often given too little time. 
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Fig. 2—General workflow showing the five basic steps 
in a geostatistical reservoir characterization. 
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To construct a 3D reservoir model, all the data from the 
contributing disciplines are brought together and subjected 
to various mathematical formulas that use a variety of statis-
tical metrics. EDA can be categorized into four basic steps: 
univariate analysis, multivariate analysis, data transforma-
tion, and discretization. Univariate analysis consists of pro-
filing the data by calculating such traditional descriptors as 
the mean, mode, median, and standard deviation, to name 
a few. Multivariate analysis consists of examining the rela-
tionship between two or more variables with methods such 
as linear or multiple regression, the correlation coefficient, 
cluster analysis, discriminant analysis, or principle-com-
ponent analysis. Data transformations are used for placing 
data temporarily into a convenient form for certain types of 
analyses. For example, permeability often is transformed into 
logarithmic space as a convenient way of relating it to poros-
ity. Geostatistical analyses, such as conditional simulation, 
require data to be transformed temporarily into standard 
normal space to honor the assumption of normality implicit 
in the algorithms. All transformations require a precise back-
transform that returns the data to their initial state. Typically, 
the standard normal transformation is used in geostatistical 
analyses (Deutsch and Journel 1997). Discretization is the 
process of coarsening or blocking data into layers consistent 
within a sequence-stratigraphic framework. Original data, 
such as well-log or core properties, are resampled into this 
space. The process is not trivial and must be checked against 
the raw-data statistics to ensure preservation of key hetero-
geneities (Fig. 3). 

Spatial Modeling
Geological features and associated petrophysical properties 
generally are not distributed isotropically within a deposi-

tional environment. This fundamental principle generally 
is not addressed well in most computer-based interpolation 
algorithms, and it is the basis for early complaints about 
computer mapping. Geostatistics provides a method for 
identifying and quantifying anisotropic behavior in data with 
metrics that are used during interpolation or simulation to 
preserve directions and scales of continuity. The method 
is called variography, and the set of metrics it produces is 
identified from a graph called the semivariogram (hereinafter 
referred to simply as the variogram). 

To understand variography, it is important to describe how 
interpolation algorithms use control points to estimate a 
value at a grid node or, more generally, an unsampled loca-
tion. Most interpolation algorithms require two basic inputs: 
a grid and a set of control points (wells). Estimates can be 
provided at grid-cell centers or at the grid nodes, commonly 
referred to as “cell centered” and “corner point” estima-
tion, respectively. If the grid cell is in 3D, then the cells are 
referred to as “voxels.” The advantages and disadvantages of 
each method are beyond the scope of this paper. For more 
information on gridding methods, see Lyche and Schumaker 
(1989). To compute an estimate at a specific unsampled loca-
tion, the algorithm searches for nearby control points within 
a “neighborhood.” There are several parameters that can be 
set to control the search neighborhood, but, ultimately, a set 
of neighbors is selected. While an estimated value could be 
calculated easily by a simple arithmetic average of the neigh-
boring values, most algorithms will weight the neighboring 
control points inversely by distance. That is, neighbors that 
are far from the unsampled locations to be estimated are 
given lower weights than those that are close by. The tech-
nique is known as inverse-distance weighting (Davis 1986). 
While the concept seems to be reasonable, it is flawed in 
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Fig. 3—Discretization of sequences or parasequences should be consistent with a geologic stratigraphic model. 
General possible configurations are: (a) proportional, (b) parallel to top surface, (c) parallel to base surface, 
or (d) parallel to a reference surface.



that it assumes that the weight applied to a given neighbor 
at a specified distance is the same regardless of its azimuthal 
position from the unsampled location. As shown in Fig. 4, 
the artifact resulting from isotropic weighting is commonly 
expressed as contours that bend toward one another, forming 
a “figure 8” shape with the narrow waist perpendicular to the 
major axis of continuity. A weighting scheme is needed that 
embraces the concept of distance weighting while simultane-
ously considering anisotropy. Variography offers such a solu-
tion to this distance- and directional-weighting problem.

The variogram is computed by analyzing sample pairs. 
Sample pairs can be well-log data, cores, or seismic common-
depth-point data. They can be from continuous variables like 
porosity or density, or discrete variables like geologic facies. 
The variogram can be computed in any direction: horizon-
tally and vertically. The concept is to compare pairs of data 
values at a variety of regular separation distances, known as 
“lags.” The measured values from each sample (e.g., structural 
elevation, porosity, and permeability) in a given pair are sub-
tracted from one another, and the result is squared to ensure 
that the number is positive. One could surmise that a pair of 
measurements very close together would have a squared dif-
ference close to zero and that measurements at increasingly 
larger separation distances would have increasingly larger 
squared differences. However, when separation intervals 
reach a certain distance, there is no longer any expectation 
that the values will follow any regular behavior. A single pair 
of points at a large lag can have one very low and one very 
high value or two values close in magnitude. Any similarity 
or dissimilarity would be completely random. If the results 
for each pair in a given lag are summed and averaged, then 
plotted as the mean squared difference (variance) against the 
mean lag distance, the experimental (semi)variogram is pro-
duced. If all possible pairs are used irrespective of azimuth, 
the result is known as an “omnidirectional” variogram. If 
pairs are selected such that they have a particular orientation, 

the results are known as “directional” variograms. A typical 
variogram shape is shown in Fig. 5. 

The variogram shape is predictable, and its attributes must 
be recorded and used later in modeling. The required model-
ing components of the variogram are shown in Fig. 5 and 
consist of the “sill,” “range,” and “nugget.” The inflection 
point at which the variogram flattens is called the “sill” and 
is theoretically equal to the true variance of the data. The 
distance at which the sill is reached is called the “correla-
tion range or scale” and defines the distances over which 
there is a predictable relationship with variance. Beyond the 
inflection point, the data are not correlated, and no predict-
able relationship can be defined. The “nugget effect” occurs 
when the slope of the variogram intersects the y-axis above 
the origin, suggesting the presence of random or uncorre-
lated “noise” at all distances. Often, the nugget is the result 
of sample aliasing where the geological feature of interest 
occurs at a scale smaller than the sampling interval (i.e., well 
spacing). As discussed later, modeling with or without a nug-
get can have a significant effect on mapping. 

As mentioned earlier, one goal is a spatial weighting 
scheme. By constructing directional variograms, the changes 
in correlation range with azimuth can be observed. For 
example, imagine an anticline oriented northwest/southeast. 
A variogram constructed of pairs at each lag oriented in the 
northwest/southeast direction should show a correlation 
range that is considerably longer than that in the northeast/
southwest direction, perpendicular to the strike of the anti-
cline. Fig. 6a shows such a variogram. In practice, determin-
ing the minimum and maximum directions of continuity is 
tedious, requiring construction of many variograms with a 
variety of azimuths. Fortunately, most geostatistical packages 
now offer a simpler solution by computing the variogram 
“map,” which depicts variance for all azimuths (Fig. 6b) 
(Davis 1986). The reader is cautioned in interpreting the 
word “map.” Here, it is not a geographic map, but rather a 
polar graph of variance and azimuth along lag increments. 

The final step in variography is to model the experimental 
variogram. Modeling is necessary because the experimental 
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Fig. 4—Isotropic weighting depicting the classic “figure 
8” artifact. The white concentric circles represent lines 
of equal weights around cell center to be estimated. 

Fig. 5—Omnidirectional experimental (semi)variogram.

JPT • NOVEMBER 2006 81



variogram reports the variance only at the centroid of each 
lag interval. The kriging and simulation algorithms require 
knowledge of the variance at all possible distances and azi-
muths. Modeling the variogram is not a curve-fitting exercise 
in the least-squares sense (Gringarten and Deutsch 1999). 
The goal of the modeling exercise is to capture the sill, slope, 
range, and nugget (if present) by use of a specific set of func-
tions, usually the spherical, exponential, Gaussian, linear, or 
power function. Only these functions, along with a finite set 
of others, are authorized models that ensure stability in the 
mathematics (Isaaks and Srivastava 1989). 

The variogram contains much information that is beyond 
the scope of this paper. The value of the sill and range, the 

presence or absence of a nugget, the steepness of the slope, 
the nuances of its shape at different lags, and the various 
patterns seen on variogram maps all contribute to a deeper 
understanding of the data. 

Kriging
With the data subjected to EDA, and the spatial model (var-
iogram) constructed, the next step is to interpolate the key 
variables for the reservoir characterization onto a grid. The 
interpolation method used in geostatistics is kriging.

The reader is referred to Isaaks and Srivastava (1989) for 
a discussion of the kriging matrix. Fig. 7 compares three 
maps of porosity from a west Texas oil field that has a known 
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Fig. 6—Bidirectional variogram (a) shows the minimum and maximum directions of continuity. Variogram 
“map” (b) shows all directions of continuity simultaneously—variance increases from light blue (low) to brown 
(high). The orientation of the directional ellipse (N10°W), representing the anticline, is well defined, making 
selection of the maximum and minimum direction of continuity simple.

Fig. 7—Interpolation comparison of a porosity surface for a west Texas oil field containing 55 wells. Shown are 
(a) a typical isotropic inverse-distance-based method, (b) kriging with an omnidirectional variogram, and (c) 
kriging with a directional variogram. Note the increased degree of continuity in the north-northeast/south-
southwest direction in (c).



direction of continuity roughly north/south. Fig. 7a uses a 
standard inverse-distance interpolation algorithm, Fig. 7b 
uses kriging with an omnidirectional variogram, and Fig. 7c 
uses kriging with a north/south directional variogram. Note 
the difference in general continuity, particularly when using 
the directional variogram. 

A major advantage of kriging over other interpolation algo-
rithms is the ability to use more than one variable simultane-
ously to predict the value at an unsampled location. The pro-
cedure is the multivariate case of kriging called “collocated 
cokriging.” The most common use of collocated cokriging 
is combining well data with seismic data to interpolate a 
structural surface, or combining seismic acoustic impedance 
and porosity measurements from wells to predict porosity. 
Fig. 8 depicts a series of collocated cokriged results from 
different degrees of correlation between acoustic impedance 
and porosity. The kriged porosity map takes on more of the 
seismic character as the correlation increases. When the cor-
relation between acoustic impedance and porosity is −1.0, 
the collocated cokriged result is essentially a rescaling of the 
acoustic-impedance map to porosity. Note, however, that the 

method is not equivalent to a simple linear-regression rescal-
ing. A full discussion of collocated cokriging can be found in 
Goovearts (1997).

Conditional Simulation: Capturing Heterogeneity
Conditional simulation provides engineers and geoscientists 
with the ability to produce practical reservoir models that 
reflect the proper spatial relationships among the various 
geological elements and their petrophysical properties as 
well as the heterogeneous nature of those properties. Further, 
the results can be expressed in probabilistic terms, allowing 
quantification of uncertainty and providing valuable input to 
flow simulation and risk analysis.

Fig. 9 compares two interpolation methods with condition-
al simulation. Fig. 9a is a cross section through a hypothetical 
sand/shale sequence and serves as the reference image. This 
cross section was sampled at three locations, labeled 1, 2, and 
3, and the sample data were used to construct the remain-
ing images. Figs. 9b and 9c are the result of interpolation: 
inverse distance and kriging, respectively. Kriging and inverse 
distance are similar with respect to preserving only the low-
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Fig. 8—Collocated cokriging of a porosity surface from a west Texas oil field containing 55 wells: (a) results 
using the computed correlation coefficient, r, between acoustic impedance and well porosity; (b–f) demon-
strate the range of results using low to high correlations, r. Note that when the correlation between acoustic 
impedance and porosity is low, the results resemble the kriging solution without using the seismic covariable. 
When the correlation is high, the results resemble the seismic acoustic impedance.
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frequency information. Because all interpolation algorithms 
are fundamentally averaging techniques, they produce results 
that are inherently smoother than reality. The only practical 
difference between Figs. 9b and 9c is that kriging tends to 
honor the input data better. Figs. 9d and 9e resemble the 
reference image more closely by capturing the high-frequency 
information while honoring the input data. These more-het-
erogeneous-looking images represent two of many possible 
solutions (realizations) produced by use of a conditional-
simulation algorithm. Like kriging, conditional simulation 
honors the well data but produces results that differ in the 
interwell space. The degree of difference is a function of the 
amount and spacing of data as well as their inherent variabil-
ity. Each realization is said to be equally probable. 

The preservation of the high-frequency component is 
a proxy for heterogeneity and is what makes conditional-
simulation methods appealing to many reservoir modelers. 
Conditional simulation is an extension of kriging, reintro-
ducing the variance into the equation. Because numerous 
realizations can be produced from a single set of data, they 
can be ranked and post-processed to study the degree of 
uncertainty in the models. Not only can the degree of simi-
larity from one to the next be quantified, but the quantiles 
representing conservative, speculative, or most-likely cases 

can be identified. The mathematics behind conditional 
simulation is well documented in the literature (Deutsch and 
Journel 1997; Goovearts 1997; Lantuejoul 1993; Lantuejoul 
1997; Matheron 1975). 

There are several conditional-simulation algorithms, and 
vendors have incorporated some of them into commonly 
used modeling packages. In the space allotted for this paper, 
it is impossible to discuss the details of each simulation 
algorithm. Instead, a more general discussion is offered that 
attempts to compare some of the basic differences among the 
algorithms and offer some guidelines for selecting a specific 
type of algorithm (Yarus et al. 2002). 

Pixel-Based and Object-Based Simulation. Conditional 
simulation can be used in various stages of the modeling 
effort. Pixel-based methods operate on one pixel at a time 
to simulate structural surfaces, isopachs, and petrophysical 
properties, for example. They are distinguished from object-
based methods (also referred to as Boolean) that operate 
simultaneously on groups of connected pixels to create 
geological objects, and they are used exclusively for simu-
lating facies. Typical pixel-based methods include turning-
bands simulation (Mantoglou and Wilson 1982), sequential 
Gaussian simulation (Deutsch and Journel 1997; Goovearts 
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Fig. 9—Interpolation compared to conditional simulation. A reference image representing a hypothetical 
cross-sectional view of a sand/shale sequence (a) is sampled in three locations (1, 2, and 3). The results are 
interpolated by use of (b) inverse distance and (c) kriging and by use of conditional simulation (d and e). 
Note that only low-frequency information is preserved in interpolation, while high-frequency information is 
preserved in conditional simulation.
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1997; Deutsch 2002), probability-field simulation (Deutsch 
and Journel 1997; Goovearts 1997; Deutsch 2002), and 
truncated Gaussian simulation (Galli et al. 1994). Object-
based methods consist of variations of the general marked-
point process (Lia et al. 1997; Hastings 1970) (Fig. 10). 
There are various implementations of all these algorithms, 
including multivariate forms that allow for the integration 
of secondary data such as seismic or trend maps. Particular 
attention should be paid to the parameterization of these 
algorithms to ensure their proper use. 

Fig. 11 shows the results of facies simulation and subse-
quent petrophysical simulation of a west Texas oil field. Facies 
simulations for two different layers in the reservoir were con-
structed with the two genres of simulation algorithms: object-
based (Fig. 11a) and pixel-based (Fig. 11b). Figs. 11c and 11d 
demonstrate the respective petrophysical simulations. 

Uncertainty Analysis
Conditional simulation results in numerous realizations, 
each somewhat different from the next, depending on the 
amount of data available and the degree to which the reser-
voir is truly understood. The reason for generating multiple 
realizations is to enable quantitative assessment of the degree 
of uncertainty in the model being built. It is through these 
realizations that the “stochastic” characteristics become 
known. The degree of difference from one realization to the 
next is a measure of the uncertainty. Summarizing the real-
izations into a set of statistical metrics and displays uses the 
full potential of this method. 

There are a few important statistical summaries and sum-
mary maps to consider when evaluating a set of realiza-
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Fig. 11—Conditional simulation of facies and porosity from a west Texas oil field. A Boolean or object simula-
tion of interpreted channel siltstones is shown in (a), while (b) shows a pixel-based solution for the same data. 
The porosity simulation for each case is shown in (c) and (d), respectively.

Fig. 10—Example showing (a) objects used to create a 
channel system and (b) lobes from a turbidite system. 
Objects can have rules that govern their size, orienta-
tion, symmetry, and other attributes. 
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tions—in particular, the mean and standard deviation of the 
realizations and the integrated probability-distribution curve. 
The mean and standard deviation of the realizations can be 
derived from post-processing and provide the ability to make 
an estimate of a value at an unsampled location as well as 
the tolerance around it. Integrated probability curves can 
be generated for economic variables, such as stocktank oil 
originally in place or pore volume, then specific realizations 
that match key economic quantiles (e.g., P10, P50, and P90) 
can be used in flow simulations to estimate the possible, 
probable, and proven reserves (Fig. 12).

Post-processing realizations are key to understanding the 
bounds of uncertainty in developing a geostatistical reser-
voir-characterization model. The results have a wide range 
of applicability including development drilling, secondary 
and tertiary recovery, and, more broadly, portfolio analysis. 
There is a great deal more to uncertainty analysis, not the 
least of which includes various ranking strategies and the 
pooling of scenarios and realizations. These, however, will 
be left for future discussion. For now, this overview should 
leave the reader with the feeling that the process of applying 
geostatistical methodologies to reservoir modeling is a key 
component in defining the spatial continuity and capturing 
the space of uncertainty. 

Concluding Thoughts and Future Directions
There have been several significant accomplishments, which 
are directly attributed to geostatistics, for describing res-
ervoirs. In addition to providing a common technological 
framework accepted by most of the geoscience and engi-
neering community, the most common achievements agreed 
upon by leading practitioners and researchers surveyed for 
this publication are the ability to integrate scaleable data, 
quantitatively describe heterogeneity, and capture the key 

range of uncertainty. Although some experts believe that the 
geostatistical applications in commonly used software pack-
ages have stagnated, some new methodologies are emerging. 
Of particular note are plurigaussian simulation (Armstrong 
et al. 2003) (currently available in some products) and mul-
tiple-point statistics (Caers and Zhang 2002; Strebelle 2005) 
(prototypes are available). Both of these powerful algorithms 
have the look and feel of Boolean simulation but overcome 
issues of high well density and traditional variography 
(Fig. 13). 

Although there have been major advances over the past 
2 decades, there remain definite areas for improvement. 
Perhaps the biggest nemesis plaguing geostatistics is its 
reputation of being a trade craft, and that it requires skilled 
experts. There is no denying that geostatistics cannot be 
applied haphazardly. It may be highly automated in some 
commercial software products, but the user is not excused 
from taking the time to understand what lies beneath the 
push of a button. There are very few aspects of this technol-
ogy that cannot be mastered sufficiently through a series 
of professional seminars and through practice. The barrier 
we observe is not the inability of professionals to under-
stand the mathematics, but the limited time given them to 
enhance their skill sets. 

The next-most-common problems identified in discus-
sions with practitioners deal with misunderstandings and 
misconceptions believed prevalent within the general-user 
community. 

• Geostatistics will never account for the physical pro-
cesses that created the underlying spatial distribution, which 
will always remain an interpretation made by a responsible 
professional. The best we can hope for is the ability to peer 
through the mass of erroneous and contradictory data and 
see some semblance of order. 

• There is not a single geostatistical method or workflow 
that can be applied to every problem. Every problem is dif-
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Fig. 12—Probability curve representing pore volume, 
made from 1,000 realizations of a west Texas field. 
The quantiles identified represent the P10, P50, and 
P90 realizations. 

Fig. 13—Examples depicting complex facies geom-
etries from plurigaussian simulation (a and b) and 
multiple-point statistics (c and d).
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ferent. A unique combination of methods and an individual-
ized workflow should be selected and designed to solve each 
particular problem. 

• Geostatistical results will never reproduce nature exactly. 
It will provide us with “polite fictions” that appear to behave 
realistically enough to improve our decision making for a 
particular period of time. 

• Geostatistics is a methodology and does not compensate 
for the use of inappropriate variables. Good variables must 
be selected to provide meaningful results to the reservoir 
simulator.

• Geostatistics will never be automatic, and it will never 
compensate for poor implementation. It solves a certain class 
of problems very well when applied properly, but it does not 
solve every problem. 

Although geostatistics requires the application of statis-
tics and mathematics, most importantly it necessitates good 
domain expertise from the team of geologists, geophysicists, 
petrophysicists, and engineers. The statistics and mathematics, 
while not to be taken lightly, remain tools of the practitioners, 
who are obligated to be diligent in scrutinizing not only the 
modeling steps but also the results. It is all too simple to 
become sophisticated “button pushers” and lose sight of com-
mon sense.
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