A new modeling framework for estimating snow water equivalent using artificial neural networks, passive microwave data and geostatistics
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75 reservoirs and 52 hydroelectric power
generating stations located in over 90 basins
in the province of Quebec (Canada).

Areliable estimation of snow cover
and snow water equivalent (SWE) is
needed as SWE is a dominant
source of water supply in Canada

Hallikainen and Jolma, 1992). Including physiographic and atmospheric data as predictors gave meaningful algorithms (Singh and
Gan, 2000). Very few studies have used neural network models for SWE retrieval from SSM/I data (Tedesco et al., 2004).

Ourgoalis to use a neural network model to retrieve SWE by using passive microwave brightness temperature raw data (SSM/I
channels in vertical and horizontal polarization) and gradients as predictor variables. The modeling framework involves the following
steps:

1. Mapping ground-based SWE observations by geostatistical interpolation such as kriging with an extemal drift (KED). This map
is used as the target of the neural network model and is provided along with a map of the standard deviation of estimation of the
geostatistical model. WE

« Scattered single point data giving measurements of
snow depth and density. SWE observations, typically § L e S N
sparse both spatially and temporally, are derived from
snow depth and density.

« Elevation data derived from a Digital Elevation Model
(DEM) giving information about the variation of SWE
away from the single point data.

Problem
How to combine single point data and elevation
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1. Context 2. Modeling framework 3. Mapping SWE observations: Kriging with an external drift (KED)
Hydro-Quebec is the biggest producer of
electricity in North America (97% hydraulic). Many inversion algorithms that retieve SWE by using passive microwave brightness temperature data or indices have been Context Ordinary krigin
Hydro-Quebec operates more than 500 dams, proposed during the last 20 years. These algorithms are multivariate linear regression models (Tait, 1998; Chang et al., 1987, y Kriging KED

NEURAL NETWORK TRAINING METHODOLOGY.

Select the best pixels
according to the ratio
between the standard
deviation of the error
of estimation and the
interpolated values of
SWE obtained by KED

Divide the best pixels set into
representative subsets by
using a self-organising map
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and test data sets) by sampling each
representative subsets

Sampling procedure
25 km mask

To draw this chart, we
assumed that all the
available pixels are
members ofthe same

Pixel with
Max SWE

Training
Validation

Test

1 M| e .
T AW G SR

3. Create 3 data sets (training, validation

representative subset.

Non selected pixels

A major advantage of this training methodology is the possibility of analyzing
graphically the training performance of the FFNN. As a matter of fact, only a
few pixels of an image are selected by the sampling procedure to constitute

the training, validation and test sets for the FFNN training.

" The extra set gathers all the pixels ot in the training,
vaiidation and test sets

Sensitivity Analysis
Sensitivity is estimated by dividing the
standard deviation of the output by the
standard deviation of an input which is
varied between its mean +/- n times
standard deviation (nbetween 1 and 3)
while the remaining input values are
set to their respective means
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6. Discussion and Conclusion

observations over the La Grande River basin.

Future studies will involve:

« taking into account additional variables as external drifts in KED method to improve the accuracy of
ground-based map

brightness temperature raw data that do not provide sufficient accuracy on a pixel scale

« providing an uncertainty map along with the FFNN SWE map.

This new modeling framework for SWE mapping combines artificial neural networks, passive microwave data
(SSM/1) and geostatistics (KED). The neural network training methodology is very attractive and efficient. It facilitates
the training performance evaluation. SWE mapping by using a FFNN was performed in 2003 and the results,
although showing some overestimation, were consistent with the ground truth provided by KED mapping of SWE

« using brightness temperature difference indices and gradients as input predictor variables of the FFNN instead of

the SWE
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