Setting up a unified 100m bathymetry model for the French coastal areas
- methodology and innovative outcomes -

N. Jeannée, O. Lemarchand (GEOVARIANCES)
B. Loubrieu, J.F. Bourillet (IFREMER Géosciences Marines)
E. Moussat (IFREMER SISMER)
J. Populus (IFREMER DYNECO)
J.C. Le Gac, G. Morvan (SHOM)

Contact: Mail: jeannee@geovariances.com
Tel: +33 (0)1 60 74 74 54 – Mob: +33 (0)6 84 04 35 41
Contents

- Introduction
- Input data
- Methodology and Results
 - Bathymetry modeling
 - Overview of by-products (DTM quality, acquisition year, ...)
- Conclusions and Perspectives
Introduction

• Context
 - Importance of bathymetry models for numerous oceanographic projects
 - For each specific project, bathymetry is usually modeled using available data: SHOM bathymetric database (BDBS), port authorities datasets, multi-beam datasets acquired during bathymetry surveys, already existing high-resolution bathymetry models...

⇒ Several drawbacks:
 i) Inconsistency between data QC procedures, modeling algorithms and characteristics of bathymetry products,
 ii) Loss of efficiency and information when the same area need to be modeled again for another project...

• Objective

Set up a unified bathymetry model at 100m which ensures, for the French coastal zones, the consistency of both:
 i) data processing, merge and modeling procedures,
 ii) bathymetry products delivered for a whole region.
Input Data

- **Bathymetric Data**

 - SHOM Soundings (BDBS)
Input Data

- **Bathymetric Data**
 - SHOM Soundings (BDBS)
 - Other sources
 - Bordeaux
 - Various SHOM data
 - Dunkerque
 - SHOM Iroise 100m
 - RouenLeHavre
 - StNazaire
Input Data

- **Bathymetric Data**
 - SHOM Soundings (BDBS)
 - Other sources
 - Bordeaux
 - Various SHOM data
 - Dunkerque
 - SHOM Iroise 100m
 - RouenLeHavre
 - StNazaire
 - Local DTM models
 - Mont St Michel (100m)
 - Lannion bay (5m)
 - Douarnenez bay (10m)
 - Capbreton Canyon (40m)
Input Data

- **Bathymetric Data**
 - SHOM Soundings (BDBS)
 - Other sources
 - Bordeaux
 - Various SHOM data
 - Dunkerque
 - SHOM Iroise 100m
 - RouenLeHavre
 - StNazaire

- Local DTM models
 - Mont St Michel (100m)
 - Lannion bay (5m)
 - Douarnenez bay (10m)
 - Capbreton Canyon (40m)
Input Data

- **Auxiliary data: coast line and isobaths**
 - Coast line (black) and isobath 50m (green): frontiers for data interpolation near the coast and towards the open sea.
 - Height of the water at the maximum of the highest tide at coast line (SHOM software) potentially used to constrain data interpolation near the coast.
 - Isobath zero (ZeroCM - IFREMER/SHOM) used for comparison with the DTM model.
Methodology

- **Pre-processing**
 - Choice of a projection system: Mercator N46
 - Automation of data import (journal files)
 - Acquisition year extraction from the survey number (SHOM) or datafile names (other sources)

- **Data Quality Control**
 - Redundancy and consistency of various bathymetry datasets:
 - Consistency checked in overlapping areas (scatter diagrams, comparison of short range variability…)
 - Application of several priority criteria:
 - spatial area covered by the dataset (the wider the better),
 - acquisition year (the younger the better),
 - data origin (SHOM)
 - Mixing of both manual and automatic procedures
 - Transmission of information about erroneous data to the SHOM
 - Merge of remaining files and tiles
Methodology

- **Bathymetry modeling methodology:**
 - Geostatistical framework (flexibility, possibility to quantify DTM uncertainty)
 - On two representative tiles, comparison of several modeling techniques:
 - ordinary kriging with default or fitted variogram,
 - FAI-k kriging (fitting of local trends).

- **Choice of the most relevant approach based on several criteria:**
 - Visual quality control of DTM (empirical)
 - Use of a validation dataset (50% of data) not used for the DTM computation
 - Comparison to multi-beam high resolution models (Lannion)

- **Most relevant approach:**
 - Kriging with linear model and small nugget component
 - Neighborhood choice:
 - Octants, 2 neighbors per octant (max. number of consecutive empty octants allowed: 3)
 - Neighborhood size: 250m, min. number of neighbors: 4
Bathymetry Model: Results

- Filling towards the open sea: DTM 500m (IFREMER)
Bathymetry Model: Results

- **English Channel**
 - Undersea dunes
 - Artefacts in the East
Bathymetry Model: Results

- Southern Brittany
Quality control of results

- Good consistency of DTM isobath 0m with the reference ZeroCM, except in under-sampled areas.
Bathymetry Model: Results

- **Quality control of results: Gironde river’s mouth**
Overview of by-products

- **Aim:** improve the product qualification

- **By-products:**
 - DTM uncertainty (quality) ≤
 - Acquisition year ≤
 - Interpolation method
 - Producer / provider organization
 - Survey number

- **Outcome:**
 - These products allow advanced data qualification and are currently transposed to other applications
 - Full automation of the entire procedure
Methodology

- **DTM uncertainty**
 - Kriging standard deviation
 - Unique variogram model (stationary assumption) \Rightarrow same order of magnitude wherever we are (smooth vs. highly variable areas)
 - Alternative: locally weight the kriging standard deviation according to the local variability of bathymetry
Methodology

- DTM uncertainty

\[\text{Local } \sigma^2 \rightarrow \]

![Variogram](image)

![Distance vs Variogram](image)

![Kriging Stdev](image)

![Smoothed Local Stdev](image)

![Final Kriging Stdev](image)
Methodology

- **Acquisition year**
 - Computation of local statistics about the age
 - Acquisition year: average year, standard deviation, minimum, maximum, Difference max-min
Conclusions and Perspectives

- **Methodological outcomes**
 - Application of classical geostatistical algorithms
 - Fulfilment of objectives in terms of spatial resolution, uncertainty and age description
 - Full automation of the modeling procedure, from data import to DTM export of results
 - Difficulties to identify abnormal profiles on some surveys (ex: MSM)

- **Perspectives**
 - Mediterranean sea and Corsica
 - Regular update of models in order to integrate newly acquired data
 - « Moving-Geostatistics » methodology, jointly developed with the company Estimages, to account for local bathymetry characteristics
Questions

- Test tiles for the choice of the interpolation model

Tile 18090

Tile 14583