

# Geostatistical assessment of long term human exposure to air pollution

# <u>Nicolas JEANNEE</u>, V. NEDELLEC, S. BOUALLALA, J. DERAISME, H. DESQUEYROUX





**VNConsultants** 

http://www.iteksoft.com/ -Require Adv. Pack License GeoENV 2004 - Neuchatel, 13-15 octobre 2004



### Objectives

To illustrate the efficiency of geostatistics in providing the basic figures to perform an Health Impact Assessment (HIA) of ambient air pollution.

#### Key points:

- HIA requires the accurate assessment of the population exposure to air pollutants.
- Case Study from UNECE-WHO Pan European Program for Transport, Health and Environment: "Transport-related health impacts and their costs and benefits with a particular focus on children".
- Poor efficiency of linear estimation techniques (kriging/cokriging) to solve non linear problems and perform risk analysis
  - $\Rightarrow$  Stochastic simulations of PM10 that integrate:
    - correlation between PM10 and more densely acquired NO<sub>2</sub> data,
    - more recent PM10 data that supplemented the PM10 monitoring network.
- Population exposure to different levels of concentrations, once air concentration results are coupled with geo-data from the last national census (1999).



### Contents

### Introduction

- Spatial modeling
- Population exposure
- Conclusions

Introduction

**Spatial Modeling** 

**Population exposure** 



# Introduction

### • Health Impact Assessment (HIA)

- Scientific approach that allows to forecast impact of air pollution on public health.
- Epidemiological studies investigate the relationship between
  - temporal variation of pollutant air concentrations (data from air monitoring network) and
  - health outcomes in the population (data from hospitals, other public health institutions, measured in representative sample of the population).

 $\Rightarrow$  **Exposure response function (ERF)**: estimate the number of cases (morbidity or mortality) for a given atmospheric concentration of a given air pollution indicator.

### • Specific HIA on transport-related air pollution

- Accurate assessment of the population exposure to chemical compounds that are indicators of transport-related pollution.
- Numerous epidemiological study results established ERF between PM10 (particulate matter with an aerodynamic diameter less than 10 micron) air concentration and increased frequency in many health outcomes.
- Preliminary step of this HIA: the assessment, with data from the French air monitoring network, of PM10 ambient air concentrations.

| Introduction | <b>Spatial Modeling</b> | Population exposure | Conclusions |  |  |  |
|--------------|-------------------------|---------------------|-------------|--|--|--|
|--------------|-------------------------|---------------------|-------------|--|--|--|

## Introduction

#### • Presentation of the approach:

- Data analysis and spatial modeling of average annual PM10 concentrations from existing measuring stations in France in year 2000 (interest is put on long-term exposure effects).
- Significant increase in the reliability of the results by taking into account:
  - the correlation between PM10 and more densely acquired NO2 data,
  - more recent PM10 data that supplement the PM10 monitoring network in otherwise entirely non sampled areas.
- Linear estimation techniques not adapted for non linear calculations and risk analysis  $\Rightarrow$  conditional cosimulations of PM10 concentrations.
- Coupling air concentration results with geo-data from the last national census (1999), the population exposed to different levels of average annual concentrations is calculated.
- Statistical parameters from the resulting distributions are derived in the perspective of carrying out the HIA study on transport related air pollution.
- All geostatistical calculations performed using Isatis<sup>®</sup> software.

| Introduction | <b>Spatial Modeling</b> | <b>Population exposure</b> | Conclusions |  |
|--------------|-------------------------|----------------------------|-------------|--|
|--------------|-------------------------|----------------------------|-------------|--|

### • Data analysis of average annual PM10 concentrations

- 185 measured stations in year 2000 (54 proximity stations)



- Proximity stations excluded from the analysis (lack of spatial representativity)

| Introduction | <b>Spatial Modeling</b> | <b>Population exposure</b> | Conclusions |  |  |
|--------------|-------------------------|----------------------------|-------------|--|--|
|              |                         |                            |             |  |  |

### • Correlations:

Introduction

- PM10 measured in 2001:
  - 23 additional samples
  - Correlation coeff.: 0.84

**Spatial Modeling** 



- Possible models to integrate these additional data:
  - Standard cokriging between PM10 (2000) and PM10 (2001)
  - Kriging of PM10 (2000) completed by 2001 measures, the latter being penalized by a Variance of Measurement Error (equal to the variance of the residuals around linear regression)

**Population exposure** 



### • Correlations:

- NO2 data:
  - Measured at 296 stations in 2 including 259 background stations (to be compared with PM10: 131)
  - Correlation coeff. with PM10: 0.49



- Model: ordinary cokriging with PM10

| Introduction Spatial Modeling | <b>Population exposure</b> | Conclusions |  |
|-------------------------------|----------------------------|-------------|--|
|-------------------------------|----------------------------|-------------|--|

### • Variogram model

(linear model of coregionalization)

Introduction



### • Several models to estimate PM10 (2000):

- Ord. kriging of PM10 (2000),
- Ord. kriging of PM10 (2000 completed by 2001 with VME),
- Ord. cokriging of PM10 (2000) and PM10 (2001),
- Ord. cokriging of PM10 (2000 completed by 2001) and NO2 (2000).

### • Validation:

Introduc

- Calculation of the Mean Quadratic Error (MQE) on five validation sets (22 to 30 datapoints per set):

|     |                                  | Validation set |              |              |              |             |           |
|-----|----------------------------------|----------------|--------------|--------------|--------------|-------------|-----------|
|     |                                  | 1              | 2            | 3            | 4            | 5           | Mean Rank |
|     | 1/d2 PM10 2000                   | 26, <b>ð</b>   | 13, <b>9</b> | 16, <b>5</b> | 12, <b>3</b> | 21,6        | 4,6       |
|     | OK PM10 2000                     | 10,1           | 7, <b>3</b>  | 15, <b>3</b> | 11, <b>9</b> | 6, <b>8</b> | 2,8       |
|     | OK PM10 2000 comp2001            | 11, <b>8</b>   | 6, <b>5</b>  | 12,2         | 14,9         | 4, <b>2</b> | 2,8       |
|     | OCK PM10 2000 / PM10 2001        | 10,2           | 6,8          | 12, <b>3</b> | 13, <b>4</b> | 6, <b>3</b> | 3,0       |
|     | OCK PM10 2000_comp / NO2 2000    | 10, <b>5</b>   | 6, <b>Z</b>  | 11, <b>8</b> | 12,2         | 4,1         | 1,8       |
|     | (Ranked M(QEv, 14QEs)t, 5=worst) |                |              |              |              |             |           |
| tio | n Spatial Modeling               | Popul          | ation ex     | posure       | С            | onclusi     | ons isa   |

#### • Resulting mapping of PM10 (2000)



Introduction

Spatial Modeling

**Population exposure** 

Conclusions



### Population exposure

- Poor efficiency of linear estimation techniques to solve non linear problems and perform risk analysis
  - $\Rightarrow$  Stochastic simulations of PM10 using the model previously established.

#### • Analysis of gaussian transforms (anamorphosis)

- PM10 data have been transformed into gaussian data, and the anamorphosis function has been modeled (data clustering taken into account to avoid bias).
- Though our interest is on PM10, NO2 has been transformed too:
  - correlation analysis and bivariable spatial structure between two gaussian transforms usually yields to better results and ensures the homogeneity of the process,
  - the Turning Bands co-simulation algorithm requires first the non conditional simulation of both variables, that should be gaussian.
- Calculation and modeling of variograms of PM10 and NO2 gaussian transforms using the same basic structures as for the raw concentrations.

| Introduction | <b>Spatial Modeling</b> | <b>Population exposure</b> | Conclusions |  |  |
|--------------|-------------------------|----------------------------|-------------|--|--|
|--------------|-------------------------|----------------------------|-------------|--|--|

### Population exposure

### • Co-simulation of PM10 and NO2 concentrations

- 200 conditional co-simulations have been performed using the Turning Bands technique, with 500 turning bands.
  - TB algorithm simplifies the 2D simulation in several 1D simulations along randomly generated lines, then reconstruct the 2D simulation by averaging the projected values from the 1D simulations (Matheron, 1973).
  - Number of turning bands: only parameter required to ensure the consistency of the resulting simulations (histogram and variogram reproduction).
  - Cosimulations obtained by simulating each basic structure, using the linear model of coregionalization decomposition.
- Adequacy of this number of turning bands has been verified on a few simulations, in terms of histogram and variogram reproduction, before the back-transformation in raw scale.
- Once simulations are obtained and validated, end of the geostatistical work...

| Introduction | <b>Spatial Modeling</b> | <b>Population exposure</b> | Conclusions |  |
|--------------|-------------------------|----------------------------|-------------|--|
|              |                         |                            |             |  |

### Population exposure

#### • Population exposure:

- Number of inhabitants known for each 4km x 4km grid cell (last national census of 1999).
- For each PM10 simulation, computation of the population exposed to a given interval of pollution, for example: population exposed to PM10 concentrations between 5 and 10 µg/m<sup>3</sup>.



- Repeat for all simulations  $\Rightarrow$  distribution of the population exposed for example to an average annual PM10 concentration between 5 and 10  $\mu$ g/m<sup>3</sup>.
- Characteristics about this statistical distribution derived for conducting the HIA:

|                | 5-10 µg/m3 | 10-15 µg/m3 | 15-20 µg/m3 | 20-25 µg/m3 | 25-30 µg/m3 | 30-35 µg/m3 | 35-40 µg/m3 |
|----------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Mean           | 0,23       | 2,09        | 28,50       | 22,09       | 4,49        | 0,61        | 0,21        |
| Std. Deviation | 0,14       | 0,50        | 1,53        | 1,36        | 0,81        | 0,28        | 0,15        |
| Quantile 2.5%  | 0,08       | 1,13        | 25,65       | 19,33       | 2,82        | 0,18        | 0,01        |
| Quantile 97.5% | 0,50       | 3,13        | 31,68       | 24,47       | 6,11        | 1,30        | 0,55        |

| Introduction | Spatial Modeling | <b>Population exposure</b> | Conclusions | -3 |
|--------------|------------------|----------------------------|-------------|----|
|              |                  |                            |             |    |

# Conclusions (1/2)

• Efficiency of geostatistics to provide the basic figures of a specific HIA on air pollution, based on PM10:

- The geostatistical framework offers the possibility to generate several realizations of the phenomenon of interest, here the annual PM10 concentrations.
- Realizations obtained by means of conditional cosimulations between PM10 and  $NO_2$  (Turning Bands algorithm)
- Integration of complementary PM10 data from 2001 through a variance of measurement error approach.
- Calculation of the population exposed to different levels of PM10 concentrations for each realization.
- Statistical results are then used for carrying out the HIA.



# Conclusions (2/2)

#### • Future work:

- Part of the PM10 pollution specifically attributable to traffic.
- Integration of auxiliary variables (like NO2, soil occupation, etc) does not replace information linked to the physico-chemical process of the pollution (obtained from detailed analysis of the emissions and transformation process, through a classical numerical simulation of transport).
- The latter could be incorporated in the geostatistical method as an accurate cofactor (collocated cokriging, kriging with external drift).
- Advantage of this model: integrate the actual data from the air monitoring network and the best knowledge on the pollution phenomenon.
- Acknowledgments: my co-authors, and the financial support of the French agency ADEME (Agence de l'Environnement et de la Maîtrise de l'Energie) through contracts nº 03 62 C0023 and nº 03 62 C0053.

| Introduction | <b>Spatial Modeling</b> | <b>Population exposure</b> | Conclusions |  |  |
|--------------|-------------------------|----------------------------|-------------|--|--|
|--------------|-------------------------|----------------------------|-------------|--|--|

### Just in case...

#### • Kriging with variance of measurement error (VME)

- Numeric values with varying level of precision might be available for the variable of interest. For example, the data may come from several surveys: old ones and new ones, the latter being more accurate due to advances in measurement techniques.
- In such cases error variances albeit different for each sub-population may be known. Certain data might be assumed to have an error variance of 0, whilst some indirect or old measures are uncertain with a known error variance.
- Assumption: instead of the "true" concentration value z<sub>i</sub> we only know z<sub>i</sub>+e<sub>i</sub> with e<sub>i</sub> a random error satisfying the following conditions for each sampling point *i*: E[e<sub>i</sub>]=0, Cov[e<sub>i</sub>, e<sub>k</sub>]=0 for k ? *i*, Cov[z<sub>i</sub>, e<sub>i</sub>]=0 and Var[e<sub>i</sub>]=V<sub>i</sub>.
- Kriging with variance of measurement error (VME) integrates these error variances. From a kriging system point of view, the VME approach simply consists in adding the  $V_i$  values to the diagonal covariance terms.

