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Objectives
To illustrate the efficiency of geostatistics in providing the basic 
figures to perform an Health Impact Assessment (HIA) of ambient 
air pollution.

Key points:
HIA requires the accurate assessment of the population exposure to air pollutants.
Case Study from UNECE-WHO Pan European Program for Transport, Health and 
Environment: “Transport-related health impacts and their costs and benefits with a 
particular focus on children”.
Poor efficiency of linear estimation techniques (kriging/cokriging) to solve non 
linear problems and perform risk analysis
⇒ Stochastic simulations of PM10 that integrate:

– correlation between PM10 and more densely acquired NO2 data,
– more recent PM10 data that supplemented the PM10 monitoring network. 

Population exposure to different levels of concentrations, once air concentration 
results are coupled with geo-data from the last national census (1999).
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Introduction
Health Impact Assessment (HIA) 

– Scientific approach that allows to forecast impact of air pollution on public health.
– Epidemiological studies investigate the relationship between

• temporal variation of pollutant air concentrations (data from air monitoring 
network) and

• health outcomes in the population (data from hospitals, other public health 
institutions, measured in representative sample of the population).

⇒ Exposure response function (ERF): estimate the number of cases (morbidity or 
mortality) for a given atmospheric concentration of a given air pollution indicator.

Specific HIA on transport-related air pollution
– Accurate assessment of the population exposure to chemical compounds that are 

indicators of transport-related pollution.
– Numerous epidemiological study results established ERF between PM10 (particulate 

matter with an aerodynamic diameter less than 10 micron) air concentration and 
increased frequency in many health outcomes.

– Preliminary step of this HIA: the assessment, with data from the French air 
monitoring network, of PM10 ambient air concentrations.
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Introduction
Presentation of the approach:

– Data analysis and spatial modeling of average annual PM10 concentrations from 
existing measuring stations in France in year 2000 (interest is put on long-term 
exposure effects).

– Significant increase in the reliability of the results by taking into account:
• the correlation between PM10 and more densely acquired NO2 data,
• more recent PM10 data that supplement the PM10 monitoring network in otherwise entirely 

non sampled areas.

– Linear estimation techniques not adapted for non linear calculations and risk 
analysis ⇒ conditional cosimulations of PM10 concentrations.

– Coupling air concentration results with geo-data from the last national census 
(1999), the population exposed to different levels of average annual concentrations 
is calculated.

– Statistical parameters from the resulting distributions are derived in the perspective 
of carrying out the HIA study on transport related air pollution.

– All geostatistical calculations performed using Isatis software.
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Spatial modeling

Data analysis of average annual PM10 concentrations
– 185 measured stations in year 2000 (54 proximity stations)

– Proximity stations excluded from the analysis
(lack of spatial representativity)
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Spatial modeling
Correlations:

– PM10 measured in 2001:
• 23 additional samples
• Correlation coeff.: 0.84

PM10 (2001)

PM10 (2000)
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– Possible models to integrate these additional data:
• Standard cokriging between PM10 (2000) and PM10 (2001)
• Kriging of PM10 (2000) completed by 2001 measures, the latter being 

penalized by a Variance of Measurement Error (equal to the variance 
of the residuals around linear regression) 
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Spatial modeling
Correlations:

– NO2 data:
• Measured at 296 stations in 2000

including 259 background stations
(to be compared with PM10: 131)

• Correlation coeff. with PM10: 0.49

– Model: ordinary cokriging with PM10
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Spatial modeling

Variogram model
(linear model of

coregionalization)
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Spatial modeling
Several models to estimate PM10 (2000):

– Ord. kriging of PM10 (2000),
– Ord. kriging of PM10 (2000 completed by 2001 with VME),
– Ord. cokriging of PM10 (2000) and PM10 (2001),
– Ord. cokriging of PM10 (2000 completed by 2001) and NO2 (2000).

Validation:
– Calculation of the Mean Quadratic Error (MQE) on five validation sets 

(22 to 30 datapoints per set):

Mean Rank
4,6
2,8
2,8
3,0
1,8

Validation set
1 2 3 4 5

1/d2 PM10 2000 26,0 13,9 16,3 12,4 21,6
OK PM10 2000 10,1 7,3 15,3 11,9 6,8
OK PM10 2000 comp2001 11,8 6,5 12,2 14,9 4,4
OCK PM10 2000 / PM10 2001 10,1 6,8 12,4 13,1 6,4
OCK PM10 2000_comp / NO2 2000 10,5 6,7 11,8 12,2 4,1

(Raw MQE)

Validation set
1 2 3 4 5

1/d2 PM10 2000 5 5 5 3 5
OK PM10 2000 1 4 4 1 4
OK PM10 2000 comp2001 4 1 2 5 2
OCK PM10 2000 / PM10 2001 2 3 3 4 3
OCK PM10 2000_comp / NO2 2000 3 2 1 2 1

(Ranked MQE, 1=best, 5=worst)
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Spatial modeling
Resulting mapping of PM10 (2000)
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Population exposure
Poor efficiency of linear estimation techniques to solve non linear 
problems and perform risk analysis
⇒ Stochastic simulations of PM10 using the model previously established.

Analysis of gaussian transforms (anamorphosis)
– PM10 data have been transformed into gaussian data, and the

anamorphosis function has been modeled (data clustering taken into 
account to avoid bias).

– Though our interest is on PM10, NO2 has been transformed too:
• correlation analysis and bivariable spatial structure between two gaussian transforms usually 

yields to better results and ensures the homogeneity of the process,
• the Turning Bands co-simulation algorithm requires first the non conditional simulation of 

both variables, that should be gaussian.

– Calculation and modeling of variograms of PM10 and NO2 gaussian
transforms using the same basic structures as for the raw concentrations.
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Population exposure
Co-simulation of PM10 and NO2 concentrations

– 200 conditional co-simulations have been performed using the Turning 
Bands technique, with 500 turning bands.

• TB algorithm simplifies the 2D simulation in several 1D simulations along 
randomly generated lines, then reconstruct the 2D simulation by averaging the 
projected values from the 1D simulations (Matheron, 1973).

• Number of turning bands: only parameter required to ensure the consistency of 
the resulting simulations (histogram and variogram reproduction).

• Cosimulations obtained by simulating each basic structure, using the linear 
model of coregionalization decomposition.

– Adequacy of this number of turning bands has been verified on a few 
simulations, in terms of histogram and variogram reproduction, before the 
back-transformation in raw scale.

– Once simulations are obtained and validated, end of the geostatistical
work…
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Population exposure
Population exposure:

– Number of inhabitants known for 
each 4km x 4km grid cell (last 
national census of 1999).

– For each PM10 simulation, 
computation of the population 
exposed to a given interval of 
pollution, for example: population 
exposed to PM10 concentrations 
between 5 and 10 µg/m3.

– Repeat for all simulations ⇒ distribution of the population exposed for example to 
an average annual PM10 concentration between 5 and 10 µg/m3.

– Characteristics about this statistical distribution derived for conducting the HIA:
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5-10 µg/m3 10-15 µg/m3 15-20 µg/m3 20-25 µg/m3 25-30 µg/m3 30-35 µg/m3 35-40 µg/m3
Mean 0,23 2,09 28,50 22,09 4,49 0,61 0,21
Std. Deviation 0,14 0,50 1,53 1,36 0,81 0,28 0,15
Quantile 2.5% 0,08 1,13 25,65 19,33 2,82 0,18 0,01
Quantile 97.5% 0,50 3,13 31,68 24,47 6,11 1,30 0,55
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Conclusions (1/2)

Efficiency of geostatistics to provide the basic figures of 
a specific HIA on air pollution, based on PM10:

– The geostatistical framework offers the possibility to generate 
several realizations of the phenomenon of interest, here the 
annual PM10 concentrations.

– Realizations obtained by means of conditional cosimulations
between PM10 and NO2 (Turning Bands algorithm)

– Integration of complementary PM10 data from 2001 through a 
variance of measurement error approach.

– Calculation of the population exposed to different levels of PM10 
concentrations for each realization.

– Statistical results are then used for carrying out the HIA.
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Conclusions (2/2)

Future work:
– Part of the PM10 pollution specifically attributable to traffic.
– Integration of auxiliary variables (like NO2, soil occupation, etc) does 

not replace information linked to the physico-chemical process of the 
pollution (obtained from detailed analysis of the emissions and 
transformation process, through a classical numerical simulation of 
transport).

– The latter could be incorporated in the geostatistical method as an 
accurate cofactor (collocated cokriging, kriging with external drift).

– Advantage of this model: integrate the actual data from the air 
monitoring network and the best knowledge on the pollution 
phenomenon.
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Just in case…

Kriging with variance of measurement error (VME)
– Numeric values with varying level of precision might be available for the 

variable of interest. For example, the data may come from several surveys: 
old ones and new ones, the latter being more accurate due to advances in 
measurement techniques. 

– In such cases error variances albeit different for each sub-population may be 
known. Certain data might be assumed to have an error variance of 0, whilst 
some indirect or old measures are uncertain with a known error variance.

– Assumption: instead of the “true” concentration value zi we only know zi+ei
with ei a random error satisfying the following conditions for each sampling 
point i: E[ei]=0, Cov[ei, ek]=0 for k ? i, Cov[zi, ei]=0 and Var[ei]=Vi.

– Kriging with variance of measurement error (VME) integrates these error
variances. From a kriging system point of view, the VME approach simply 
consists in adding the Vi values to the diagonal covariance terms.


