

## Geostatistics for Mining Engineers and Geologists



### Integrating Various Data

 Combine all available data (ore grades, geology, contaminant or trace elements information, geophysics) in one single database for geologically oriented processing.

### Getting the Best Sampling

 Assess the impact of sampling patterns on the reduction of uncertainty in resource evaluation.

#### Building a Robust and Accurate Block Model

- Achieve detailed domain analysis using advanced coding of data and block models.
- Reveal the **spatial distribution** of the mineralization and **correlations** between grades with advanced variographic analysis of your data.
- Build your **block model** using the kriging method suited to your deposit and data characteristics.
- Refine your block model with a consistent geological model to control the metal distribution.

### Assessing the Risks

isatis

- Explore the grade distribution characteristics with the conditional simulations. Numerous equiprobable grade values are provided giving information on the variability of the block model.
- Identify the grade realizations which best represent the whole grade variability to characterize the risk attached to a project due to resource uncertainty.
- Improve grade control using the appropriate simulation technique to investigate the production sampling pattern.



Among different criteria measuring the kriging efficiency, the kriging variance is a good indicator for discriminating different drilling patterns and optimizing drilling mesh dimensions.



Soft or hard boundaries may be defined for accurate geological or production domaining.



00 Prob ( ♥ > 800 ppm) 200 100 50 100 100 100 100 100 200 280

In-depth data analysis allows to identify outliers and anisotropies.

Mine planning can be refined by introducing pessimistic and optimistic scenarios into the model.



# Adjusting the Selective Mining Unit (SMU)

Evaluate the recoverable resources (ore, metal quantities) from the Grade-Tonnage curves according to SMU size and economic grade cut-off.



Various techniques are used to check the Block Support Effect: Uniform Conditioning (multivariate), Global Correction (through the anamorphosis function), conditional simulations.

## Evaluating the Information Effect

 Anticipate the ore/waste decision at the feasibility stage to avoid misclassification at the production stage using non-linear techniques.

### Classifying the Resources

- Obtain reliable classification of the resources into measured, indicated or inferred categories from Confidence Intervals computations.
- Compare grades sampled at the plant facility with predicted grades for reconciliation.



Estimated grades on blocks are compared to grade values at the plant facility, accounting for polygons, i.e. blasts.

## Automating the Geostatistical Process

Set up routine production workflow using batch facilities. Day-to-day production samples are easily integrated to quickly update grade estimates and enhance mine planning.

### ISATIS from Exploration to Production



#### Exploration

- Global resource estimation
- Drilling pattern optimisation
- Geostatistical insight on the geological representation
- Uncertainty assessment

#### Feasibility

- Local recoverable resource estimation
- Sensitivity of project profitability to SMU dimensions
- Grade-Tonnage curves
- Evaluation of the information effect on the ore recovery at the future production stage
- Resource classification

#### Production

- Grade Control
- Grade Reconciliation
- Routine estimation update