
Centro di GeoTecnologie

University
of Siena
(Italy)

CGT

 

Copyright © Enrico Guastaldi 2007

Geostatistical modelling of 
uncertainty for the risk analysis 

of contaminated sites

Enrico Guastaldi
guastaldi@unisi.it

CGT, Centre for GeoTechnologies, University of Siena - Via Vetri Vecchi, 34 
– 52027, San Giovanni Valdarno (AR) – Italy

Tel. +39 0559119483
Fax. +39 0559119439

e-mail: guastaldi@unisi.it
URL: www.geotecnologie.unisi.it

mailto:guastaldi@unisi.it


Centro di GeoTecnologie

University
of Siena
(Italy)

CGT

2
 

Copyright © Enrico Guastaldi 2007

Enrico Guastaldi - Geostatistical modelling of uncertainty for the risk analysis of contaminated sites

Geostatistical study
• Study of the multivariate simulation of pollutants, in order to assess 

uncertainty for the risk analysis of a contaminated site.
► Terrain samples taken from boreholes analysed by a chemical laboratory for a remediation project 

of a steelworks in Settimo Torinese area

• Data set comprises concentrations of several pollutants:
► Subset of ten organic and inorganic compounds was selected.

• First part of study: univariate and bivariate statistical analysis
► Data set transformed to the Gaussian space so as to reduce the effects of extreme high values due 

to
 contaminant hot spots and
 because of the requirements of sequential Gaussian simulation.

• Spatial correlation and cross-correlations from variography analysis
► This led to an hypothesized linear model of coregionalization for all variables.

• Geostatistical simulations were applied in order to assess the uncertainty.
► Two types of simulation were performed:

 Univariate Sequential Gaussian Simulation (SGS),
 Correlation Correction Simulation and

 Sequential Gaussian Co-Simulation (SGCOS).

• Grade-tonnage curves were produced to assess basic environmental risk.

0. Introduction



Centro di GeoTecnologie

University
of Siena
(Italy)

CGT

3
 

Copyright © Enrico Guastaldi 2007

Enrico Guastaldi - Geostatistical modelling of uncertainty for the risk analysis of contaminated sites

• Assess the uncertainty of the spatial variability of contamination by heavy 
metals and heavy hydrocarbons in order to perform a risk analysis 
suitable for the reclamation a contaminated land site.

• In particular, the specific objectives of this study are to:

► Analyse and interpret the data set;

► Generate estimations of the average pollutant concentrations over blocks of 
terrain of a size suitable for reclamation and remediation;

► Generate multivariate conditional simulations of the principal pollutants

► Assess risk based on the conditional simulation approach

► Provide recommendations for further sampling on the basis on the simulation 
results

► Provide a basis for planning reclamation and remediation and identify future 
applications of this method for this particular site and for other similarly 
contaminated sites. 

Objectives
0. Introduction
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► Two case studies, North Italy, sampled in 2002
 Site A: 10 environmental variables
 Site B: 26 environmental variables

Project Overview
0. Introduction

Site AA Site BB
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●Both datasets used in this project tend to limit the potentiality of geostatistical investigation methods (usual condition when 
one has to deal with environmental data) (Guastaldi, 2005).

● both samples arrays were collected without a regular sampling grid, but just following some particular precept risen 
from several circumstantial fact, as survey experience of professionals in the field, geological aspects, a priori 
information on more contaminated areas, etc.

► Additionally, politico-economical reasons leaded to drill a relatively small number of boreholes outside both 
industrial areas of investigated sites. 

• The two areas are similar as problems (two contaminated areas), even if they are quite different in terms of datasets 
(number of samples, core dimension, sampling grid, density of sampling, etc). So, different steps were completed at the 
beginning stages of work, in order to achieve dataset suitable for the further calculations to quantifying the uncertainty in 
contaminant concentrations for a preliminary reclamation study.

► Limitations to studying Site A

● Nature of the data set.

● Boreholes are on an irregular sampling grid

● Very few samples in each borehole and the Lengths of the boreholes vary from 5m to 20m, the lengths of cores 
vary from 0.1m to 1.0m) and sampling within a borehole is often discontinuous.

● The usual approach is to recomposite the samples to approximately the same length but the discontinuous nature 
of much of the sampling made this difficult. A composite size of 0.5m was chosen and the data were recomposited 
to this length.

● Occasional presence of extremely high values of concentration of heavy metals and hydrocarbons

● Although this is exactly why a reclamation project is in progress, these outliers mask the underlying spatial variability 
quantified in variograms and cross-variograms. A significant amount of time was spent in investigating and 
overcoming the effects of outliers.

● Finally, this study must be considered as a parallel study to the reclamation project of this contaminated site and as 
an alternative methodology to be applied to similar case studies

Main limitations of this study
0. Introduction
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Main limitations of this study
0. Introduction

●Both datasets used in this project tend to limit the potentiality of geostatistical investigation methods (usual condition when 
one has to deal with environmental data) (Guastaldi, 2005).

● both samples arrays were collected without a regular sampling grid, but just following some particular precept risen 
from several circumstantial fact, as survey experience of professionals in the field, geological aspects, a priori 
information on more contaminated areas, etc.

► Additionally, politico-economical reasons leaded to drill a relatively small number of boreholes outside both 
industrial areas of investigated sites. 

• The two areas are similar as problems (two contaminated areas), even if they are quite different in terms of datasets 
(number of samples, core dimension, sampling grid, density of sampling, etc). So, different steps were completed at the 
beginning stages of work, in order to achieve dataset suitable for the further calculations to quantifying the uncertainty in 
contaminant concentrations for a preliminary reclamation study.

► Limitations to studying Site B

► Nature of dataset. Data had no needs to be recomposited, however, their number in the vertical direction was no 
enough to carry on a complete three-dimensional study.

 Samples in each borehole weren’t too much continuous for the whole length of boreholes, they are more 
concentrated in the upper part, near to the surface. Even if the superficial part is the most contaminated, the 
lower part should have been sampled more intensely, in order to found a truly representative “blank” 
distribution of each variable.

► Outliers had caused some problem to deal with the “natural” distribution of variable. However, there are no plant 
protection products in natural terrain, so it is impossible to eliminate the hot spots to get better distributions or 
better variograms, because the outliers are what we are looking for.

► Some variables have poor structure. Nevertheless these variables can be modelled in a coregionalization 

 The most part of X-ESVs do not present good structures, even modellable.

 Directional ESVs are more erratic than the omnidirectional ones, as usual, because the large amount of data 
under the instrumental tolerance, the outliers and the general lack of data in vertical direction.
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Studied variables:

• Borehole code
• x co-ordinate
• y co-ordinate
• core lower limit
• core upper limit
• Cr [mg/kg]
• Co [mg/kg]
• Ni [mg/kg]
• Cu [mg/kg]
• Zn [mg/kg]
• As [mg/kg]
• Pb [mg/kg]
• Cd [mg/kg]
• Sn [mg/kg]
• Heavy 

Hydrocarbons 
[mg/kg] (called HY)

64

Bottom well sediments2WS

Surface samples for the determination of values in the bottom3BB

Superficial piezometers (~22m)3PS

Deep piezometers (~33m)4PP

Continuous log type boreholes24SI

Percussion type boreholes (Geoprobe® type)28SG  

Sampling collection methodsFrequencyCode

Local co-
ordinates 
and north 
orientation 
just for 
layout 
needs

Dataset A: Boreholes and variables
1. Exploratory Data Analysis \ Site A

Site AA
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• Number of samples per borehole varies 
between a minimum of 2 and 7 (on 
average 5)

► The reason for the differing numbers 
of sample in boreholes is not known

► No obvious pattern in the locations of 
the boreholes that have the most 
samples

► They are fairly uniformly spread over 
the study area

• Length of samples in each drillhole varies 
from 0.1m to 1m

• Lengths of most gaps (i.e. missing data) 
are either between 0.5m and 1.5m, or 
between 2.5m and 3.0m.

Samples 
Recomposition 
(=0.5m length)

Dataset A: samples
1. Exploratory Data Analysis \ Site A

Site AA
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Spatial distribution of data
• The spatial distribution of the data is presented as:

► Scatter plots of concentrations against depth
 Scatter plot maps of the data values were plotted for variable to provide a rough 

indication of the variation in pollutant concentration with sampling depth
 For each variable, two scatter plots were drawn showing concentration at two depth 

intervals (0.0-1.0m and 1.0m-2.0m), which were chosen because the most 
representative

► Histograms of concentration and relative statistics of each variable under study.
 Histograms based on slicing the three-dimensional volume.
 For each “slice”: number of samples (bars), minimum, maximum

and mean value of concentration, standard
deviation and coefficient
of variation

 The results are plotted
slice by slice in
conventional
histograms.
The figure illustrates the
manner in which
the 3D volume is sliced and
shows the notation used

1. Exploratory Data Analysis \ Site A
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Variation No. of samples and 
principal descriptive 
statistics of CrCr 
concentration

Minimum value of concentration

Coefficient of variation

Number of samples (bars)

Maximum value of concentration

Standard deviation value of concentration

Mean value of concentration

1

3 1

Spatial distribution of data
1. Exploratory Data Analysis \ Site A
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Scatter plots of CuCu concentration at A: 0-1m and B: 1-2m
Variation No. of samples and principal descriptive statistics of CuCu 

concentration

 

A B 

2 13

Spatial distribution of data
1. Exploratory Data Analysis \ Site A

Site AA
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Scatter plots of PbPb concentration at A: 0-1m and B: 1-2m
Variation No. of samples and principal descriptive statistics of PbPb 

concentration

 

A B 

 

 

2 13

Spatial distribution of data
1. Exploratory Data Analysis \ Site A

Site AA
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• All frequency distributions show:
► high positive values of skewness and high value of kurtosis
► the mean, the median and the mode are never coincident

• Data are not from a Normal (Gaussian) distribution
• Gaussian transformation is required for sequential Gaussian simulation

357.038.587.38664.771.613624.6860.3112.430.9631.95Conf.Lev (95%)

224224224224224224224224224224Count

150246.24557.972027.89188546.881588.41037835.3530137.9660315.184837.1666060Sum

276005405304580094.6221500481881056.592030Maximum

60.50.063.6113.67.886.527.817100Minimum

27594539.5529.9445796.493.6221486.44810.2723.4848.7731930Range

6.675.347.637.454.746.687.131.691.104.92Skewness

52.7031.4960.9857.4225.4944.1759.766.993.0227.65Kurtosis

7352421.14245.013140.2225490275.6149.6757820314.4209769.78906.6253.258882.5Variance

2711.5365.1556.045048.7912.2327528.54458.0194.377.29242.66Stan. Deviation

100.90.5143.81102627324230Mode

35.003.600.5024.703.62101.0029.69262.7520.66240.00Median

181.174.353.74337.340.821839.3330.606.310.4916.21Standard Error

670.7420.359.05841.737.094633.19134.54269.2621.59294.91Mean

HYSnCdPbAsZnCuNiCoCr

Summary statistics of 0.5m recomposited raw data

Univariate Statistical Analysis
1. Exploratory Data Analysis \ Site A

Site AA
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othergrain size (> 2mm)

otherresidue a 105°C

PPPLindane

PPPβ-HCH  (β-HCH esaclorocicloesano)

PPPα-HCH  (α-HCH esaclorocicloesano)

Heavy MetalsCopper

Heavy MetalsLead

PPPPCB (Policlorobifenili)

HydrocarbonsHeavy Hydrocarbons

HydrocarbonsLight Hydrocarbons

PPPEndrin

PPPDieldrin

PPPDichloromethane

PPP
DDD (diclorodifenildicloroetano)
+DDT (diclorodifeniltricloroetano)
+DDE (diclorodifenildicloroetilene)

Heavy MetalsTotal Chromium

PPPChlordane

Heavy MetalsCadmium

PPPAtrazine

PPPAldrin

PPPAlachlor

Type of variableVariable

1. Exploratory Data Analysis \ Site B

Site BB

Dataset B: samples
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Samples recomposition 
not required

314 samples in 102 boreholes (2-7 samples per borehole)

Just 7% of 
samples 
length is 
different than 
1m

1. Exploratory Data Analysis \ Site B

Site BB

Dataset B: samples
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Three kinds of 
distribution

• Quasi-homogeneous 
(close to gaussian) (A)

• Positiv. Skewed (B)

• Very high positiv. 
skewed(most part of 
variables) (C)

Univariate Statistical Analysis
1. Exploratory Data Analysis \ Site B

Site BB
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1. Exploratory Data Analysis \ Site B

Three kinds of 
distribution

• Quasi-homogeneous 
(close to gaussian) (A)

• Positiv. Skewed (B)

• Very high positiv. 
skewed(most part of 
variables) (C)

Gaussian 
verifying

Univariate Statistical Analysis
Site BB
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• This multivariate data set provides an opportunity to conduct a complete multivariate analysis 
and a multivariate co-simulation, which can form the basis of a much more realistic risk 
assessment than a sequence of independent univariate analyses.

• This observation is, of course, only valid if the two or more of the variables are correlated in 
situ and/or spatially correlated

• Correlations between pairs of variables can be assessed by scatter plots and by calculating the 
covariance and the linear correlation coefficient (Pearson Coefficient)

Correlation coefficients matrix of raw recomposited data of Site A 

Correlation analysis

10.2630.3750.4030.3900.3650.251-0.067-0.0380.362HY

10.8510.8250.6760.8510.736-0.1140.0060.716Sn

10.9720.7580.9500.666-0.075-0.0370.837Cd

10.7530.9300.659-0.076-0.0240.833Pb

10.7040.656-0.0470.2410.739As

10.646-0.072-0.0650.818Zn

1-0.0880.0160.607Cu

10.4030.204Ni

10.155Co

1Cr

HYSnCdPbAsZnCuNiCoCr 

s xy=

∑
i=1

n

x i− x  y i−y 

n−1  s x=∑i=1

n

x i−x 
2

n−1 
s y=∑i=1

n

y i−y 
2

n−1 Site AA

1. Exploratory Data Analysis \ Site A

ρ=
sxy

sx⋅s y
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Correlation analysis

Correlation coefficients matrix of raw data of Site B Site BB

1. Exploratory Data Analysis \ Site B

• This multivariate data set provides an opportunity to conduct a complete multivariate analysis 
and a multivariate co-simulation, which can form the basis of a much more realistic risk 
assessment than a sequence of independent univariate analyses.

• This observation is, of course, only valid if the two or more of the variables are correlated in 
situ and/or spatially correlated

• Correlations between pairs of variables can be assessed by scatter plots and by calculating the 
covariance and the linear correlation coefficient (Pearson Coefficient)
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Masked

sample

• The data set for all the variables contains outliers which can strongly affect the 
statistical analysis and the subsequent geostatistical analysis. There are several 
ways of dealing with these outliers (Goovaerts, 1997):

2. Transform of data in Gaussian Space

 Consider them as 
erroneous data and remove 
them from the data set

 Consider them as coming 
from a different population

 Use robust statistics which 
are less sensitive to outliers

 Transform the data to a 
different space to reduce 
the effects of outliers.

 Discard the extreme values 
and reduce the data set to 
a more representative set 
of sample values.

Transform of data in Gaussian Space
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• The Normal distribution can be completely defined by two parameters of the 
distribution: mean and standard deviation, which for a standard cumulative 
density function are zero and one respectively

• Several methods to transform into Gaussian space:

► Log-normal transform

► ...

► Hermite polynomials transform (used for the most part of Site B's variables)

► Normal score transform (used for the most part of Site A's variables)
 Non-parametric method
 It is used to transform the data into the Normal space, and to back-transform the data 

after the estimation and/or simulation calculations
 It does not require the strong assumptions (e.g. needed for the log-normal transform)
 It provides satisfactory results, in terms of statistics and normal-probability plots

Transform of data in Gaussian Space
2. Transform of data in Gaussian Space

Site BB

Site AA
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Normal Scores Transform

Z  x =φ [Y  x  ]

Y  x =φ−1 [ Z  x  ]

• Three phase forward Normal Scores 
transform (Goovaerts, 1997):

► ranking original raw z(x) data

► Cumulative frequency of z(x)

► Normal Scores transform of z(xk) of 
kth position: coincidence of kth 
quantile of ranked data with the 
corresponding quantile of standard 
Gaussian cumulative function.
 This yield a set of transformed y(x) 

data from -5 to +5, in Normal space.

2. Transform of data in Gaussian Space / Normal Scores
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A B 

C D 

A: Frequency distribution of Cu 
raw values;
B: Frequency distribution,
C: cumulative distribution
D: normal-probability plot of 
Normal Scores transformed 
values of Cu 

6 variables have means relatively close to zero and standard deviations close to one: 
Co, Ni, CuCu, Zn, As, Pb

Site AA

2. Transform of data in Gaussian Space / Normal Scores / Site A

Normal Scores Transform
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• However there are 4 variables - CrCr, Cd, Sn and HY - for which this is not the case.
• For Cd, Sn and HY this can be explained by the use of a default minimum value equal to the lower 

detection limit of the analysis machine.
• CrCr, however, is always well sampled and there are no apparent reasons for these differences, unless 

there are two or more populations of CrCr concentration.

A B 

C D 

A: Frequency distribution of 
Cu raw values;
B: Frequency distribution,
C: cumulative distribution
D: normal-probability plot of 
Normal Scores transformed 
values of Cu 

Site AA

2. Transform of data in Gaussian Space / Normal Scores / Site A

Normal Scores Transform
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Hermite polynomials expansion

Φ  y =F−1 [G y  ]
Φ−1 z =G−1 [F  z  ]

Φ  y =∑
i

bi g
 i  y =∑

i

ci

i !
Hi  y 

ci=∫
−∞

∞

Φ y Hi g  y dy

Hi=
1

 i !g y 
d i g  y 

dyi

E [Φ  y  ]=c0

D2 [Φ  y  ]=∑
1=1

∞ ci
2

i !

F [φ y ]=G y 

Polynomials expansion of 
transform function

Variance: 

Mean: 

Transform function:

2. Transform of data in Gaussian Space
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Fitting in gaussian 
space between:

• theoretical 
monotone curve of 
expansion of n 
polynomials for 
CHLORDANE variable

•Experimental 
distribution of 
CHLORDANE variable

Back-transform:

•histogram of back-
transformed data of 
CHLORDANE (theoretical);

• Histogram of raw 
CHLORDANE data 
(experimental)

2. Transform of data in Gaussian Space

Hermite polynomials expansion

Site BB

• Hermite polynomials expansion gave better results than Normal Scores on the most 
part of Site B's variables

► Back-transformed Values Distribution (theoretical histogram) similar to the original 
one (raw data histogram) (Bleines et alii, 2004)
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13330073.121.65COPPER

160.10.0000000012.881.75LINDANE

1084400.0000000013.251.37HEAVY HYDROCARB.

332.840.0000000012.920.98DIELDRIN

170.20.0000000013.210.83DICHLOROMETHANE

17140.0000000013.10.62DDD+DDT+DDE

3065132.63-2.77TOTAL CHROMIUM

171830.0000000013.122CHLORDANE

200.40.0000000012.19-1.66CADMIUN

400.060.0000000012.91.36ATRAZINE

300.180.0000000012.711.45ALDRIN

370.240.0000000012.911.19ALACLOR

maxminmaxmin

raw variableGaussian variable
Number of 

Hermite 
polynomials

Definition of practical interval of

Variable

2. Transform of data in Gaussian Space

Hermite polynomials expansion

Site BB

• Hermite polynomials expansion gave better results than Normal Scores on the most 
part of Site B's variables

► Back-transformed Values Distribution (theoretical histogram) similar to the original 
one (raw data histogram)

► Definition intervals of variables and Hermite polynomials utilised for variables 
transforming
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A B 

C D E 

Structural analysis: Univariate approach
3. Spatial Variability and co-variability by means of variography

• Structural analysis is to
► generate three dimensional Experimental Semi-Variograms (ESV) in the Normal space
► fit models to them and
► interpret the models in the context of the local geology and other possible factors 

conditioning the spatial distribution of the pollutants.

• However, the univariate approach does not allow to consider unsampled locations and spatial cross-correlation

Structural 
analysis of CrCr.

Site AA
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• Experimental Semi-Variogram (ESV) allow us to quantify the Spatial correlation, 
i.e. the measure of spatial variability of regionalized variable Z (x) between samples 
separated by vector h.

2* h =Var {Z  x −Z xh }=E {[ Z  x −Z xh ]
2}−E {[ Z x −Z xh  ] }

2

• Possible spatial correlation between environmental variables statistically correlated
• Experimental Cross Semi-Variogram (X-ESV) quantifies spatial co-correlation

• ESVs and X-ESVs do not describe properly the continuous spatial (co)variability of 
regionalized variable Z (x) (Dowd, 2004a)

► Continuous function is required to describe changes at any separation distance
► Variogram Model
► Similar spatial behavior of  different variables

(look at variogram map)
► Linear model of Coregionalization

 Generally two structures of variance
(nugget effect + spherical model)

(Wackernagel, 2003)

12
* h =

∑
i=1

m h 

[z1 x i −z1 x ih  ] [z 2 x ir −z2 x irh ]

2⋅m h 
     

*h=
1

2mh
∑
i=1

m h

[{Z xih−Z xi }
2 ]

3. Spatial Variability and co-variability by means of variography

h={c0c [32 h
a
−

1
2 ha 

3

]    per ∣h∣≤a

c0c    per ∣h∣a

Linear Coregionalization Model
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• The linear model of coregionalization is a sum of proportional covariance models. 
Proportional covariance models are models in which all covariances (or all variograms) are 
proportional to the same covariance (or variogram) function (Chilès and Delfiner, 1999).

• In practice:
► The structural part of the variogram remains the same for every coefficient.
► All variogramsvariograms and cross-variogramscross-variograms have the same range in a particular direction

• There are automatic procedures that can fit linear models of coregionalization among 
whatsoever number of variograms and cross-variograms:

► There is no guarantee that they will work properly in all applications.
► In such cases manual adjustments of the fitted models are needed, respecting the 

following constraints: 
 Fixed range of anisotropy in any direction
 Assumption of positive definite variance-covariance matrix

3. Spatial Variability and co-variability by means of variography

Linear Coregionalization Model
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• Omnidirectional is an option, 
however...

3. Spatial Variability and co-variability by means of variography

Linear Coregionalization Model
Site BB
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3. Spatial Variability and co-variability by means of variography

Linear Coregionalization Model

 Anisotropy ratio
 Range in relation with 

underground structures 

• Omnidirectional is an option, 
however...

• Variogram map revealed the 
different continuity in 
various three-dimensional 
directions for group of 
variables (i.e. some spatial 
correlated variables having 
similar behavior)

Site BB
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Cross-Validation of Models
• Cross-Validation is a “back estimation” techniques for testing how different 

variogram models fit in ESV and X-ESV, by comparing true values of z at any 
sampled location xi , and the estimated (by kriging) z*(xi) values (Dowd, 2004)

• It's a powerfull validation methd which both assesses the performances of model 
and indicates how to improve it (Chiles & Delfiner, 1999) by checking the 
following statistics:

► mean of kriging variance

► mean squared error

► Mean Standard Errore 

► Standard deviation of estimated val.

k
2

1
N
∑
i=1

N

[z x i −z *  x i  ]
2

1
N
∑
i=1

N

[z x i −z *  x i  ]

 1
N−1

∑
i=1

N

[z x i −z *  x i  ]
2

3. Spatial Variability and co-variability by means of variography

Site BB
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Cross-Validation of Models
• Cross-Validation is a “back estimation” techniques for testing how different 

variogram models fit in ESV and X-ESV, by comparing true values of z at any 
sampled location xi , and the estimated (by kriging) z*(xi) values (Dowd, 2004)

• It's a powerfull validation methd which both assesses the performances of model 
and indicates how to improve it (Chiles & Delfiner, 1999) by checking the 
following statistics:

► mean of kriging variance

► mean squared error

► Mean Standard Errore 

► Standard deviation of estimated val.

k
2

1
N
∑
i=1

N

[z x i −z *  x i  ]
2

1
N
∑
i=1

N

[z x i −z *  x i  ]

 1
N−1

∑
i=1

N

[z x i −z *  x i  ]
2

3. Spatial Variability and co-variability by means of variography

Site BB
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• The objective of geostatistical simulation (Journel & Huijbregts, 1978; 
Goovaerts, 1997; Chiles & Delfiner, 1999; Lantuejoul, 2002; Dowd, 2004c) 
is to provide alternate realizations of regionalized variables on any 
specified scale.

• It does not create data but provides at unsampled locations a possible 
reality statistically and geostatistically similar to the original sampled data 
(Dowd, 2004c).

• Geostatistical simulation can be applied to:
– the assessment of the variabilityassessment of the variability of a regionalized variable and
– the quantification of the uncertaintyquantification of the uncertainty associated with the value of a regionalized 

variable at specified locations.
 This second application is used in this project.

• Once the contaminants have been simulated, the volume can be 
subjected to any number of simulated operational activities and it can be 
used to assess the likely concentration of a metal above the imposed legal 
limit (Dowd, 1997). 

4. Geostatistical Simulations

Geostatistical Simulations
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• Interpolation algorithms (estimations) tend to smooth the spatial variation of a 
variable;

► they overestimate small values and underestimate large values.
► This makes it difficult to detect patterns of extreme high values, for instance metal 

concentrations above legal limits.
• The estimation smoothing effect is not the same everywhere as it depends on 

the data configuration and it will be low for dense samples.

A smooth 
interpolator should 
not be used for 
applications in which 
the pattern of 
continuity of 
extremely high 
values is critical 
(Goovaerts, 1997).

4. Geostatistical Simulations

Simulation vs Estimation
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• Choice of method: based essentially on the application.
• For this project sequential conditional methodssequential conditional methods were chosen, because 

the need to respect the concentration values at each sample locations

• Sequential conditional methodsSequential conditional methods:
► easy to understand
► provide a simple, robust and manageable implementation

• Simulated values:
► Coincide with the actual values at all data locations
► Spatial correlation (same variogram) as the data values
► Same distribution (same histogram) as the data values
► Coregionalized with other variables as the data values (spatial cross-

correlation).

• Simulation Methods:
1.Correlation correction of single univariate Sequential 

Gaussian Simulations
2.Sequential Gaussian Co-Simulation

Geostatistical Simulation: Methods
4. Geostatistical Simulations
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• Simulation Methods:
– Correlation correction of single univariate Sequential 

Gaussian Simulations (SGS)
– Sequential Gaussian Co-Simulation (SGCOS)

 SGS is performed independently for each variable and any spatial cross-
correlation among the variables is ignored.

 Correlation is common in environmental applications

 Simulation results are improved by introducing a correlation correction 
between pairs of the independently simulated variables (Dowd & Xu, 2004)

221m0.5 mVertical

755m605 mN-S

1305m1745 mE-W

Nos. BlocksBlock sizes
Block 

centre

SGS grid definition of Site A

Geostatistical Simulations
4. Geostatistical Simulations / SGS
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• Simulation Methods:
– Correlation correction of single univariate Sequential 

Gaussian Simulations (SGS)
– Sequential Gaussian Co-Simulation (SGCOS)

Example of a single 
simulation in SGS 
calculation for ASAS 

(legend unit: mg/kg)

Geostatistical Simulations
4. Geostatistical Simulations / SGCOS

Site AA
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• Results of SGCOS Simulation of CdCd (Site A) and other 
variables:

► mean of 200 simulated realization (color) and standard 
deviation of estimation

• Geostatistical validation of simulation:
► A: NS horizontal direction
► B: EWhorizontal dir.
► C: vertical A 

B 

C 

4. Geostatistical Simulations / SGCOS / Site A

Site AA

z scale is 
exagerated

Geostatistical Simulations
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• Simulation Methods:
– Correlation correction of single univariate Sequential 

Gaussian Simulations (SGS)
– Sequential Gaussian Co-Simulation (SGCOS)

Example of direct variograms and 
cross-variograms for co-simulated 
variables

•SGCOS takes into account the spatial 
correlation among a set of regionalised 
variables by using the parameters of a 
linear coregionalization model.

•It is very similar to SGS, except that 
kriging is replaced by cokriging.

•The only drawback of this method is the 
significant increase in computing time 
over SGS and its is most effective for two 
or three variables and a relatively small 
dataset (Dowd & Xu, 2004). 

Geostatistical Simulations

Site AA

4. Geostatistical Simulations / SGCOS / Site A
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• Results of SGCOS 
Simulation of 
“DDD+DDT+DDEDDD+DDT+DDE” 
variable and other 
variables (Sito B):

A B

C D

Geostatistical Simulations
4. Geostatistical Simulations / SGCOS / Site B

Site BB

(A) Mean of 500 
simulated 
realizations

(B) Standard deviation
(C) Largest simulation
(D) Smallest simulation
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• Risk quantification in the form of contaminant grade-tonnage curves is 
critical for capital investment in mining and environmental projects and 
can be obtained through geostatistical simulations of the studied 
volume (Dimitrakopoulos & Fonseca, 2003).

• These curves display simultaneously the tonnage of terrain above a 
particular threshold grade and the average concentration of the 
contaminant above that threshold (or cut-off).

• In practice:
 grade-tonnage curves provide a means of determining how much of the 

population is likely to lie above or below a threshold value, i.e. the 
acceptable concentration limit

 in addition it provides the average grade of the material above the 
threshold value (Clark & Harper, 2000). For instance, if terrain below the 
legal limit is ignored, the average value of the remaining terrain will be 
higher than the original average of the population.

Risk Analysis: Grade-Tonnage Curves
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Cr Ni

Pb Cd

Risk Analysis: Grade-Tonnage Curves
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1.1248000.595.021297000.01beta-HCH

2.2499000.176.817227000.01alpha-HCH

1.8412000.596.621671000.01Lindane

0.00225.75757000.01Endrin

0.0054.51011000.1Dichloromethane

42.49516000.199.322261000.01DDD+DDT+DDE

70.215734000.199.222240000.01Chlordane

0.00129.46583000.01Atrazine

42.79584000.199.322263000.01Aldrin

Group 4

3.78300075061.6138190050Light Hydrocarb.

0.01002507.316380010Heavy Hydrocarb
Group 3

0.0010000.0200100Lead

0.008000.00150Total Chromium

0.00150.002Cadmium

0.011006005.1114100120Copper

Group 2

58.113037000.1100.022428000.01Dieldrin

0.00164.314421000.01Alachlor
Group 1

Volumes > 
TACL 
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[mg/kg]
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houses [%]
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TACL houses 

[m3]

TACL (*) for 
houses terrain 
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Location with industrial future destinationLocation with habitative future destination

Terrain Volumes [m3] with concentration values greater than:

VariableGroup

5. Grade-Tonnage Curves for environmental risk evaluation
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Risk Analysis: Contaminated Volumes
Site BB
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Conclusions
1. Geostatistical simulation is particularly useful when data are 

sparse and variability is erratic
2. Co-simulation results were better than those those obtained by 

correcting the correlation between univariate simulations
3. This study can be taken as the basis for a complete risk 

assessment for further complete remediation projects, in 
parallel with a hydrogeological simulation of contaminants in 
the underground water

Discussion
6. Discussions

Recommendations
► Further sampling on the basis on the simulation results obtained.
► More continuous and denser sampling undertaken in a few new 

boreholes could significantly improve the simulation results.
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