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Introduction 
As industry consultants involved with reservoir studies, either directly, or typically 
as mentors, we are the benefactors, not the generators, of many data types. 
Often a client desires to use seismic attributes in a reservoir characterization 
study, or we find that seismic attributes are specified as general deliverables in 
projects up for competitive bid. Many times such requests are included as a 
project deliverable simply because it is fashionable, or there is a perception that 
“every one else is doing it.” 
Since the introduction of Complex Trace Attributes in the 1970s, literally 
hundreds of new seismic attributes have emerged from a variety of 
computational methods. Attributes may measure only one quality, termed 
“Primitive” attributes, or these primitive attributes may be combined through 
some statistical, neural network, or mathematical manipulation to form “Hybrid” 
attributes (Taner, 2001). The impetus behind the computation of so many 
attributes is the desire to use them as predictive variables in reservoir 
characterization projects. Most typical studies use attributes qualitatively, such as 
in seismic stratigraphic interpretations depicting internal bedding geometries and 
terminations, or to reveal spatial patterns related to depositional environments, 
faults or factures. However, the trend is towards the quantitative use of single or 
combined attributes to predict lithology, facies, porosity, or fluid type, for 
example.  
This myriad of attributes poses a problem as few direct relationships are 
established between all the attributes and physical or geological characteristics. 
As pointed out by Barnes (2001), because many of the experts don’t know what 
to make of all these attributes, it is no wonder that the rest of us are confused.  
The purpose of this article is to review issues related to selecting and using 
seismic attributes quantitatively in reservoir characterization projects, rather than 
to describe or classify them. These latter tasks were lucidly presented in two 
recent CSEG Recorder articles by Barnes (2001) and Taner (2001). 
 
Does the Seismic Data Warrant the Use of Attributes? 
Before dashing headlong into the computation of numerous attributes, step back 
and look at quality of the data, determine the processing workflow, and ask what 
problems need to be solved. Too often we have seen that the data simply does 
not warrant use beyond a basic structural interpretation because of poor signal 
quality, low frequency content at the reservoir level, and improper processing. 
Data can be processed for structural interpretation using a minimum phase 
wavelet and a gain to enhance structural surfaces. However, the quantitative use 
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of seismic attributes dictates a different processing philosophy; what we term 
“stratigraphic” processing. Processing seismic data for stratigraphic and rock and 
fluid properties requires zero-phase, true amplitude, and migrated data, which is 
more costly and time consuming, but necessary if most attribute studies are to 
succeed.  Perhaps geometrical attributes describing spatial and temporal 
continuity do not require such rigorous processing.  
If for example, the purpose is acoustic impedance inversion, the data must be 
zero-phase, with true-amplitude recovery; otherwise the resulting impedance 
cube is meaningless for quantitative interpretation.  AVO analysis examines the 
basics of amplitude variations with offset which result from contrasts in elastic 
rock properties. AVO analysis begins with unstacked data, generating hugh 
volumes of data, but may be combined with post-stack inversion techniques to 
infer rock properties. Again, success depends on zero-phase, true-amplitude 
seismic data.  
 
What Seismic Measures and What We Require for Reservoir 
Characterization 
The parameters measurable from the seismic data are (1) travel time, (2) 
amplitude, (3) the character of events, and (4) the patterns of events. From this 
information we often compute (Sheriff, 1992): 

• Depth maps of important horizons ─ from traveltimes (and velocity 
information); 

• Velocity ─ from differences in traveltime between source and 
receiver; 

• Contrast in rock properties ─  from measurements of reflection 
amplitude; 

• Locations of faults and stratigraphic changes ─ from discontinuities 
in reflection patterns. 

• Dip and discontinuities ─ from differences in traveltimes along a 
surface 

 
From this information it is often possible to infer: 

• from velocity ─ lithology, fluid content, abnormal pressure, or 
temperature; 

• from lateral amplitude changes ─ hydrocarbon locations, changes 
in porosity, lithology, or thickness; 

• from seismic data patterns ─ depositional environments, or faults 
and fractures; 

• from changes in measurement direction  ─ velocity anisotropy, or 
fracture orientation; 

• from time-lapse measurements (4D seismic)   ─  locations of 
changes 
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For the flow simulation model the reservoir engineer needs: 

• The amount and spatial (vertical and horizontal) distribution of 
porosity; 

• Permeability 
• The nature of the fluids and their saturations; 
• Pressure 
• Temperature 
• Locations of barriers to flow (sealing and non-sealing faults, 

stratigraphic barriers, etc.) 
• Locations of thief zones (high permeability layers)  

 
Elastic Rock Properties 
The following review is not addressed to the experienced AVO and rock property 
interpreter, but to those geoscientists and reservoir engineers who still have not 
been exposed to some of the basic theory on elastic rock properties. We need to 
know what information is contained in the seismic wavelet and how to extract it, 
before trying to use it quantitatively in reservoir characterization studies. 

A rock’s physical properties, such as rigidity (shear modulus, µ), incompressibility 
(bulk modulus,κ), porosity, pore fluid, clay content, gas saturation, and lithology 
affect how seismic waves travel through rocks. 
Rocks have elastic properties and elasticity theory provides the expressions for 
the velocity of seismic P-waves and S-waves in terms of elastic rock constants 
for simple cases. Elasticity deals with deformation that vanishes completely upon 
removal of the stress which caused the deformation, such as from the passage of 
a seismic wave (Sheriff, 1973). The elastic media is determined from velocity 
and density (ρ) measurements. For isotropic media (Sheriff, 1992; Hilterman, 
2001), 

Compressional wave velocity =  =pV  [ ]ρµλ /2+   Eqn. 1  
 

Shear wave velocity = ( )ρµ /=sV     Eqn. 2 
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where σ is the Poisson ratio. Lamé’s constant λ, an elastic parameter sensitive to 
fluid content, is related to µ and κ by λ = κ - 2µ/3. These physical properties are 
related to the ability of rocks to propagate seismic waves. Our interest in P-wave 
and S-waves is that they travel through rocks differently depending on the fluid 
content and physical rock properties.  
Further theory leads to the equations of Gassmann (1951) and Biot (1956) 
which relates seismic velocity to porosity and the rock and fluid properties. 
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Seismic velocity depends strongly on porosity and often a decrease in velocity 
with an increase in porosity is the principle controlling factor of velocity. We often 
use the time-average equation (Wyllie et al. 1956) to compute porosity from 
velocity through the following expression: 
 

mf VVV
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+=
11      Eqn. 4 

 

where φ is the porosity, Vf is the velocity of the interstitial fluid, and Vm is the 
velocity of the rock matrix. 
When using attributes for the quantitative prediction of rock properties, it is 
important to remember the relations in the previous equations because they 
formulate the physical relationship between the seismic attribute and rock and 
fluid properties. 
Seismic Attributes ─ Property Predictors or False Prophets? 
For our purposes we consider a seismic attribute as any seismically derived 
parameter computed from prestack or poststack data, before or after migration. 
Amplitude, phase, and frequency are fundamental parameters of the seismic 
wavelet and from these few all other attributes are derived, either singly or in 
combinations, and many of the new attributes duplicate each other because of 
the nature of the computations. For example, bi-variate scatter plots of amplitude 
variance, average energy, RMS amplitude, reflection strength, and average 
absolute amplitude show either a linear or parabolic relationship, but all these 
attributes contain the same information (Barnes, 2001) 
With the proliferation of new attributes in the 1980s and into the 1990s, new 
methods arose to make sense of the many attributes lacking geological 
significance. There was a curious notation that if attributes didn’t make sense 
individually, perhaps they might make sense in combination. One principle 
should be kept in mind when using attributes; the physical basis for the 
correlation with properties measured at the wells. For example, a high negative 
correlation between porosity and acoustic impedance has a physical basis, 
because velocity has an inverse relationship to porosity; as velocity increases, 
the porosity typically decreases. Unfortunately, there is a common practice of 
selecting attributes based solely on the strength of their observed correlations 
with properties measured at the wells, but with little thought given to the validity 
of the correlation, except that it looks good.  
 
The Problem 
Our problem is to identify and select which attributes to use, then to select a 
method to integrate them with properties measured at the wells. The three most 
common prediction methods used in our industry today are regression, 
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geostatistics and neural networks. Each method requires making an inference 
(prediction) from the seismic attribute(s) based on its relationship to much 
sparser information measured at well locations. We also make the assumption 
that the sample population (well data) is representative of the larger parent 
population (the reservoir). The basic data integration process is accomplished in 
five steps: 

1. Calibration. Well data provide high-resolution, depth related local 
information, whereas 3D seismic data provide spatially dense, but 
vertically lower resolution, time related information.  Calibration is the first 
and most critical step in the process as the data must be calibrated both 
vertically and areally.  

2. Choice of the seismic attribute(s). The primary objective is to identify 
the attribute(s) that works best as a predictor for the reservoir property of 
interest. However, care must be taken when choosing the seismic 
attribute, because it is not unusual to find spurious or false correlations 
that do not reflect any physical basis for the relationship. The probability of 
finding a false correlation increases with the number of seismic attributes 
considered and is inversely proportional to the number of data control 
points. This concept is discussed below. 

3. Prediction. The areal distribution of the variable of interest is mapped by 
integrating the well data and the seismic attribute. This prediction step is 
typically done by either linear or non-linear regression models, neural 
networks, or using a geostatistical method like Colocated CoKriging. 

4. Cross-validation. This is the systematic removal of wells, one-by-one, 
and re-estimating their values based on the model selected. Cross-
validation is not always performed, but it does provide a means to validate 
the contribution of the secondary information to improve the prediction. 

5. Management Decisions. Depending on the project objectives, 
management decisions based on the prediction may include location of in-
fill wells, developing a depletion strategy, designing a secondary or tertiary 
recovery program. Perhaps the decision is more basic ─ are there enough 
in-place hydrocarbons to justify developing the prospect? 

The basic process is simple, but the key is which attributes to use and how to 
perform the calibration. 
 
Probability of observing a false correlation 
Most of us are familiar with the correlation coefficient, r, which is a measure of 
the strength of the relationship between one or more variables. But, we must 
remember that for a given correlation coefficient, we should make some estimate 
of its validity. For example, is a correlation of 0.83 good or bad? Most 
practitioners are aware that the smaller the number of samples, the greater the 
uncertainty about the true value of the correlation. However, few of us know 
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about what statisticians call experiment-wise error rates. As we generate more 
seismic attributes, there is a greater chance of observing at least one large 
spurious (false) correlation value; a large correlation computed purely by chance. 
Kalkomey (1997) discusses the potential risks when using seismic attributes as 
predictors of reservoir properties and illustrates the impact of spurious 
correlations. The article is highly recommended reading, but for those lacking the 
time,  we have taken the liberty of summarizing some of her work in the following 
paragraphs. 
If we consider only one seismic attribute, acoustic impedance as a predictor of 
porosity for example, then the probability of observing the absolute value of the 
sample correlation coefficient, r, greater than some constant R, given the true 
correlation (ρ) is zero can be found from the following expression: 
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where n is the sample size or the number of locations (wells) where the reservoir 
property and the seismic attribute are measured, and t is distributed as a 
Student’s t- critical value, with n-2 degrees of freedom.  
The probability of a spurious correlation depends solely on R (the magnitude of 
the spurious sample correlation) and n, the number of well measurements, based 
on the assumption of random sampling. It is interesting that when data are 
spatially correlated, as is the case for the variables we work with in the petroleum 
industry, Eqn. 5 gives a conservative estimate of the probability of a spurious 
correlation. This is because the effective sample size is smaller than the actual 
sample size; and as n decreases, the probability of a spurious correlation 
increases (Kalkomey, 1997). Table 1 shows the probability of observing a 
spurious correlation for different levels of the sample correlation, R, and different 
sample sizes, n. This is the base case when only one seismic attribute is 
considered. 
This table is used to assess the chance that the sample correlation, r, is actually 
false or uncorrelated with the reservoir property being predicted. For example, 
given 5 wells, and an r = 0.7, there is a 19% probability that the correlation is 
false. Perhaps we are willing to accept this risk, however there is another aspect 
of the correlation coefficient that should be considered ─ the confidence limits of 
the true correlation coefficient. For this example, the 95% confidence limits are 
from a minimum r of -0.48 (P97.5) and a maximum r of 0.98 (P2.5). Because the 
minimum r is negative, we cannot say with confidence that there is any 
correlation and we should reject this attribute as a predictor. Considering one 
seismic attribute and a sample correlation of 0.7, we need 9 samples before the 
minimum r is positive, but its value is only 0.07, with a 4% chance that the 
correlation is false. 
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Table 1. Probability of observing a spurious correlation between a 
reservoir property and a single seismic attribute (modified from 
Kalkomey, 1997, p 248) 

 
 
 
 
 
 
 
 
 
 
 
The problem of spurious correlations is only enhanced when considering more 
than one attribute at a time. Because many attributes contain the same 
information it is important to select independent attributes for multivariate 
analysis.  Table 2 is similar to Table 1, except in this case 5 independent 
attributes are considered as the predictors (weighted, linear combinations) of a 
reservoir property. Returning to the example above for 5 samples and a 
correlation of 0.7, we see (Table 2) that there is a 65% chance that at least one 
of the 5 attributes is falsely corrected with the reservoir property measured at the 
wells. The confidence limits on the correlation coefficient remain the same as 
before. 
Hypothesis Testing 
The most frequent use of statistics is to test some hypothesis. Our hypothesis is 
that the reservoir property measured at the wells correlates with the seismic 
attribute. This hypothesis, call the null hypothesis (H0) is the hypothesis under 
test. It is called the null hypothesis because we assume that the correlation 
between the seismic attribute and the well measurement is true. The alternative 
hypothesis (Ha) is that the correlation is not true. We may reject H0 when, in fact 
it is true, or we may accept H0 when it is false and some alternative hypothesis is 
true. These are type I and Type II errors, respectively. Table 3 illustrates a 
Decision Table and the goodness of a statistical test of a hypothesis is measured 
by probabilities of making a Type I or Type II error (Sokal and Rohlf, 1969) 
 

 
 

 Sample size 
R 5 10 20 50 100 
0.1 0.87 0.78 0.67 0.49 0.32
0.3 0.62 0.40 0.20 0.03 0.00
0.5 0.39 0.14 0.02 0.00 0.00
0.7 0.19 0.02 0.00 0.00 0.00
0.9 0.04 0.00 0.00 0.00 0.00
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Table 2. Probability of observing a spurious correlation between a 
reservoir property and five independent seismic attributes (modified 
from Kalkomey, 1997, p 
248) 

 
 
 
 
 
 
 
 
 
 
 

Table 3.  A Decision Table for the Null Hypothesis 
 
 
 
 
 
 
 
 
 

 
The Decision Table illustrates the possible outcomes one must consider to 
assess the risk in selecting seismic attributes as predictors of reservoir 
properties. 

• Type I error: We commit this error when the attribute is selected 
but the correlation is false. The prediction is less accurate, but more 
precise and the cost is an inaccurate predication with confidence. 

• Type II error: This type of error occurs when a true correlation 
exists, but we fail to use the seismic attribute as a predictor. Now 

 Samples 

R 5 10 20 50 100 

0.1 1.00 1.00 1.00 0.97 0.86

0.3 0.99 0.92 0.67 0.16 0.01

0.5 0.92 0.53 0.12 0.00 0.00

0.7 0.65 0.12 0.00 0.00 0.00

0.9 0.17 0.00 0.00 0.00 0.00

  

Decision Property and attribute 
are uncorrelated 

Property and attribute 
are correlated 

 

Keep seismic attribute as a 
predictor 

 

Type I Error 

 

Correct Decision 

(no error) 

 

Reject seismic attribute as a 
predictor 

 

Correct Decision  

   (no error) 

 

Type II Error 
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we have less accurate and less precise prediction and the cost is 
more uncertainty than justified. 

 
Kalkomey (1997) believes that for most cases the economic consequences of 
making highly confident, but inaccurate predictions (Type I error) are more 
severe than the consequence of a Type II error.  
 
An Example  
The previous discussion focused on aspects of the selection of a seismic 
attribute and the possibility that the correlation may be false. The following 
example illustrates some of these principles. The seismic attribute is acoustic 
impedance derived from zero-phase, true amplitude, and 58-fold 3D seismic 
data. Inversion to acoustic impedance followed the method of Lindseth (1979), 
using sonic and density logs from three wells to calibrate the inversion. 
Frequency content at the reservoir depth is 7-110 Hz between 1220-1370-m. The 
low frequency (0-7 Hz) contribution to impedance, due to density, was derived 
from the conversion of seismic stacking velocities to interval velocities, using a 
Gardner’s relationship. The primary target was a siliciclastic interval 16-28-m 
thick, averaging 22-m (see Chambers, et al. 1994, for a detailed discussion of 
this example). The quarter-wavelet tuning thickness is about 13-m using 70 Hz 
as the dominant frequency and an average velocity of 3,650 m/s. The objective 
of this example is to use seismic acoustic impedance to predict porosity away 
from the wells. 
 
Figure 1 shows a scatter plot of seismic acoustic impedance and porosity 
measured at 7 well locations. The sample correlation coefficient is -0.95, with 
only a 0.1% chance of a false correlation. The 95% confidence limits are -0.69 
(P97.5) and -0.99 (P2.5). The negative correlation coefficient is expected 
because acoustic impedance (AI) varies inversely with the magnitude of porosity. 
Even with these high correlations, we assume that the pattern displayed by the 
seismic AI (Fig. 2) is related to the true distribution of porosity and that the high 
correlation isn’t serendipitous. That is, there still may be a chance that the 
distribution pattern of the true porosity is quite different from the pattern displayed 
by the seismic attribute and that the well locations sampled the reservoir in such 
a manner creating a false, high correlation, thus we commit a Type I error. 
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Figure 1. Scatterplot of porosity 
percent and seismic acoustic 
impedance at 7 well locations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Map of seismic 
acoustic impedance and 
porosity percent at 7 well 
locations. 
 
 
 
 
 
Data integration was by the Markov-Bayes approach to Colocated Cokriging. 
With only seven wells, computation of a variogram is not possible; therefore the 
variogram model (Fig. 3) was derived from the seismic acoustic impedance data 
(33,800 samples. Recall that in the Markov-Bayes method, the sill of the primary 
variogram is scaled based on the ratio of variances (seismic AI/porosity), using 

r = -0.95 
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the same scale lengths and anisotropy as the seismic AI model. The cross-
covariance model has a “sill” based on the magnitude of the correlation 
coefficient. 
 
 
 
 
Figure 3. Anisotropic variogram model 
of seismic acoustic impedance. 
Dashed lines are the experimental 
points and the solid lines are the 
nested model. Vertical units are 
variance and the horizontal units are 
meters. 
 
 
 
 
Figure 4 illustrates the colocated cokriging results using the minimum correlation 
(-0.69, Fig. 4A), the sample correlation (-0.95, Fig 4B), and the maximum 
correlation (-0.99, Fig 4C). Because of the high correlation and only 7 wells, the 
footprint of the seismic attribute is very pronounced. The difference between 
Figures 4B and 4C are imperceptible, whereas differences can be seen when 
these figures are compared to the image in Figure 4A. The zone of intense red is 
not as broad in Figure 4A as it is in the other two images. From past experiences, 
suppose the operator knows that wells encountering ≥ 9% porosity, within this 
reservoir interval, are good producers. If the purpose of the study was to locate 
in-fill drilling locations, we could use any of the maps shown in Figure 4 to make 
such a decision, assuming that we did not make a Type I error (using an attribute 
when the correlation is false). Before selecting a final location, it may be prudent 
to run conditional simulations with each correlation coefficient and create a risk 
map showing probability that porosity is ≥ 9%. Figure 5 illustrates a risk map 
based on 100 conditional simulations with an r = -0.95. The only wells satisfying 
the ≥ 9% condition are the three shown with a white asterisk (*) with porosity 
values of 12.1, 13.5, and 17.4 percent (see Fig. 2)  
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Figure 4 illustrates the colocated cokriging results using the minimum correlation 
(-0. 69, Fig. 4A), the sample correlation (-0.95, Fig 4B) and the maximum 
correlation (-0.99, Fig 4C). 
 
The 55 well locations, shown in Figure 6, were the true well density (40-acre, 5-
spot) at the time of this study. The map is based on kriging 55 porosity values 
using an anisotropic variogram. Compare this map to the maps shown in Figure 
4 based on 7 wells and seismic acoustic impedance used as the predictor 
variable. The large scale features shown in the map, based on kriging porosity 
data only, are similar in appearance to those in Figure 4, but the map lacks the 
higher frequency heterogeneity added by the use of the seismic attribute.  
 
 

Porosity Percent 
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Figure 5. A risk map based 
on 100 conditional 
simulations with an r = -0.95 
showing the probability that 
porosity is ≥ 9%. 
 
 
 
 
 
 
 
 
Figure 6. A map of porosity 
based on kriging 55 values. 
The wells indicated by the 
black asterisk are the 
locations of the 7 wells shown 
in figures 2, 4, and 5. 
 
 
 
 
 
Figure 7 illustrates the value of integrating a seismic attribute when mapping 
porosity using only 7 porosity values. For this study we had the advantage of 
knowing the porosity values at 48 other well locations, thus we can test the 
accuracy of using the seismic attribute as a predictive variable. Of the 48 ‘new’ 
locations, only 9 were misclassified using the criterion of finding porosity ≥ 9 
percent. The wells shown as open circles are the values for the 7 wells and are 
predicted perfectly, because colocated cokriging is an exact interpolator, like 
kriging (the red line shows the perfect line of correlation).  
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The additional 48 wells were part a typical west Texas 40-acre 5-spot drilling 
pattern. If seismic data had been available when designing the original in-fill 
program, we can see that many wells should not have been drilled using the 
porosity cutoff criteria. 
 
 
 
 
 
 
Figure 7. Scatter plot of 
measure porosity (Y-axis) 
versus predicted porosity 
(X-axis). Nine wells were 
misclassified out of the 48 
‘new’ wells. 
 
 
 
 
 
 
 
 
What about using Linear Regression? 
Reviewing the scatterplot shown in Figure 1 and recalling that the correlation 
coefficient is -0.95, it would seem logical to simply use linear regression to 
predict porosity from seismic acoustic impedance. The map can be made using 
the following regression equation: Y= c-bX. 
 

Porosity = 62.13 – (0.00157 * AI)   Eqn. 7 
 
where c is the intercept and b is the slope. 
 
The map of porosity based on a regression relation is shown in Figure 8. At first 
glance this porosity map looks very similar to a map made using colocated 
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cokriging (Figure 4). However, the range of porosity in Figure 5 is greater than 
the predicted porosities in Figure 4; there is nothing wrong with this, except that 
the regression method predicted negative porosities. Compare Figures 7 and 9 
illustrating scatter plots between the measured and predicted porosity from 
colocated cokriging and regression. The most obvious difference is the inability of 
the regression method to predict the porosity values used to compute the 
regression equation (the open circles). The number of underestimations is the 
same as colocated cokriging, but there are 4 additional locations that over 
estimate porosity. The fundamental problem with such an application is that we 
just, inappropriately, turned a point estimation method into a spatial estimator. 
Traditional regression methods use only data available at the target location and 
fail to use existing spatial correlations from additional secondary data control 
points and the primary attribute to be estimated (Journel, 1989). The fact that 
regression uses only one data point during the estimation is valid, because 
traditional regression assumes data independence. Although the results seem 
fine, the b term (slope of the function) imparts a spatial linear bias (trend) in the 
estimates during the mapping process. The bias becomes apparent in an 
analysis of the residuals shown (Figure 10) as a scatter plot of measured porosity 
versus residual porosity, where residual porosity is measured porosity minus 
porosity predicted by linear regression at the 55 well locations. The correlation 
coefficient is 0.69. 
 
 
 
 
 
 
Figure 8. The map of 
porosity based on a 
regression relation. 
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Figure 9. Scatter plot of 
measure porosity (Y-axis) 
versus predicted porosity 
(X-axis) using a linear 
regression model (Eqn. 7). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Scatter plot of 
measured porosity versus 
residual porosity. Residual 
porosity is measured 
porosity minus porosity 
predicted by linear 
regression at the 55 well 
locations. 
 
 
 
 
 
 
 

r = 0.69 
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The displays in Figure 11 illustrate the spatial distribution of the estimation errors 
based on a cross-validation using colocated cokriging (Fig. 11 A) and linear 
regression (Fig. 11 B). The open circles represent under-estimates of porosity, 
whereas solid circles are locations of over-estimates of porosity. The desired 
pattern would be a random distribution of open and solid circles, indicating no 
bias in the estimation error. Comparing the two results, Figure 11 B shows much 
more clustering of the two symbols when using linear regression ─ the 
southwestern quadrant is almost always over-estimated, and there is more 
under-estimation of the measured porosity in the northwestern quadrant, which is 
an undesirable attribute in an estimator algorithm. The colocated cokriging error 
distribution is more random, honoring the unbiasedness trait of the system of 
kriging algorithms. 

 
Figure 11. The spatial distribution of the residual errors based on a cross-
validation using colocated cokriging (A) and linear regression (B). 
 
Integrating Geometrical Attributes 
Geometrical attributes depict spatial and temporal patterns related to bedding 
geometries, discontinuities such as faults and fracture swarms, bedding 
similarity, bedding dips, event characteristics, and can be used to quantify 
features related to depositional patterns, and related lithology (Taner, 2001). 
Traditional geostatistics uses the variogram model to capture spatial continuity by 
measuring the degree of variability or conversely correlation/continuity between 
any two locations in space. Because the variogram is based only on two-point 
statistics, it cannot easily model curvi-linear features, such as channels, nor can 
it model strongly contiguous patterns, such as fractures.  

A B
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The incorporation of geometrical features, like channels, deltas, reefs, etc. into 
reservoir models is typically accomplished using object-based (Boolean) 
geostatistical methods. Reservoir models build using objects is appealing to the 
geologists because they look realistic, that is, channels look like channels. 
However object-based methods have their limitations in that the algorithms 
require numerous input parameters describing the geometrical dimensions, such 
that object modeling becomes nearly deterministic, especially when many wells 
are used as conditioning information. However, when many wells are used, 
object modeling often fails because the parametric conditions imposed by the 
modeler cannot honor the conditioning well data. 
A new method, called multiple-point statistics has been introduced that allows 
geological patterns integration through the framework of pixel-based modeling 
(Journel, 1997, 2002; Caers, 2000; Strebelle, 2000). Training images rather 
than variograms models are used to depict the prior geological conceptual 
model, then a sequential-based simulation algorithm is used to generate multiple 
realizations, with each realization honoring the well data and the multiple-point 
statistics (patterns) derived from the training images. 
Figure 12 illustrates the integration of geological features using multiple-point 
statistics to infer spatial patterns. The image on the left represents a time slice 
through a 3D seismic amplitude cube. The image shows the presence of 
channel-like features, which are to be included in the reservoir model. The 
seismic data image is sampled, and the resampled data are used in the data 
integration step. The center image depicts a conceptual model of the channels, in 
this case, a meandering channel system, with a user specified wavelength, 
sinuosity, etc. The right image is one of many possible pixel-based simulations. 
The simulation honors the statistics of the channel morphology shown in the 
center image, and reproduces the shapes, locations, and orientations of the 
channel-like features in the seismic amplitude data (left image). The multiple-
point statistics works in 2D and 3D. 
The advantage of this method is the easy implementation and conditioning to 
well data, regardless of the number of wells, unlike object-based modeling. The 
training image could be much more complex with the incorporation of cross-
cutting features, such as a fracture system normal to the channel orientation. 
Two immediate issues to consider are the choice of the training image(s) and the 
conceptual geological model, i.e., meandering or braided channels, for this 
example can make a significance difference in the connectivity. Some current 
problems with the multiple-point statistics method are: 1) how to evaluate the 
relative contributions (weight) of the training image and the soft data, especially 
when they are somewhat inconsistent; 2) how to select samples from the training 
image, i.e., randomly, or on a Cartesian grid with an equal sampling interval, for 
example; and 3) it is not always possible to preserve the non-stationarity of the 
information in the final results, if non-stationarity is present in the seismic data, or 
the conceptual model. 
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Figure 12. These images illustrate the integration of geological features using 
multiple-point statistics to infer spatial patterns. The left image is seismic 
amplitude data showing channel-like features, the center image is the conceptual 
model, and the right image is one pixel-based realization (modified from Caers, 
2002). 
 
Summary 
Seismic attributes can be important qualitative and quantitative predictors of 
reservoir properties and geometries when correctly used in reservoir 
characterization studies. It is critical when using attributes as quantitative 
predictors of reservoir properties to consider: 1) how the seismic data were 
processed; 2) the physical basis of the correlation; 2) the possibility of false 
correlations when the number of well data are few, and/or when the number of 
attributes are many; 3) when using multiple attributes, the attributes must provide 
independent information about the reservoir property; 4) and, although, easily 
applied, linear regression is not recommended because the results will be 
biased. Geostatistical data methods, such as colocated cokriging and colocated 
cosimulations, offer attractive means to integrate seismic attribute and well 
information, without an estimation bias, and account for the scale (support) 
differences between the two data types. Geometrical seismic attributes probably 
require less rigorous data processing. Integration of geometrical information in 
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reservoir model is not as straight forward as the “rock property” attributes, 
however, the new multiple-point statistics methods have good promise. 
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