Panel Session #87

Characterization & Survey for Decommissioning and Waste Management

Geostatistics for Radiological Characterization and Sampling Optimization

Yvon DESNOYERS

More information: www.geovariances.com

Collect

Radiological Characterization Context

- Interrelated issues of D&D projects:
 - Regulatory deadlines, costs (maintenance, contractor, waste...)
 - Characterization: Radiation protection of workers, waste categorization and optimization, monitoring, clearance criteria...

• Initial characterization: a key stage for D&D success

 "Segregation and characterization of contaminated materials are the key elements of waste minimization" (Methods for the Minimization of Radioactive Waste from Decontamination and Decommissioning of Nuclear Facilities, IAEA)

The Characterization Triptych

- A three legged stool: stability and simplicity
- If one leg is missing, the stool falls
- A stable position but uncomfortable

Reminder about Sampling Designs

- Two main categories
 - Probability-based
 - Systematic
 - Random
 - Judgmental

- Mix possible to fulfil the evaluation objectives
- Iterative approach recommended

Geostatistics for Initial Characterization

- Added values of geostatistics:
 - Successfully used for site characterization (chemical & nuclear)
 - Implemented in the methodology for the radiological waste characterization in former nuclear facilities
 - Sampling optimization according to spatial structure inventory

• Key issues:

- How to optimize the investigation costs?
- How to take auxiliary information such as historical inventory and radiation maps consistently into account?
- How to quantify uncertainties in the remediation costs while computing contaminated surfaces or volumes?

Methodology: Geostatistics

- Geo + Statistics: integration of the phenomenon spatial continuity
- Main tool of geostatistics: the variogram (describes the variability between 2 points)
 - on average, the difference between two CLOSE measures is LOW
 - on average, the difference between two DISTANT measures is HIGH

$$\gamma(h) = \frac{1}{2} E[Z(x) - Z(x+h)]^2$$

| | | Model Experimental

Spatial structure analysis: experimental variogram and its modelling

Three spatial structures

Three spatial representations of the same statistical distribution

 Characterization of the spatial structures thanks to a regular sampling grid

Three spatial structures

Characterization Methodology

Data Analysis & Modeling

Use of the geostatistical multivariate approach

- Integration of all relevant information and data
- Description of the spatial correlation between two variables:
 - → Cross-variogram
- Use of surface radiation data so as to improve the estimation of activity levels (uncertainty reduction)

Risk Analysis & Estimation Support

100%	Probability map for LLW – Workstation support						
100%	36%	0%	100%	100%	81%	100%	
1%			17%	9%			
0%	0% 6%		54%	14%		0%	

- Punctual \rightarrow Hot spots
- Block → Waste category
- Impact on categorisation surfaces (averaging)

Radiological Categorization

- Decision-making tools for decontamination process:
 - Waste segregation according to activity levels and risk levels
 - Average activity per "decontamination unit"
 - Accumulation (total amount of activity)

Sampling Optimization

- Impact of the initial mesh on the estimation maps:
 - 0.66m, 1.3m, 2.0m
- What is your objective?
 - Hot spots
 - Average dose rate
 - Waste zoning

Sampling Optimization

- Integration of the geostatistical analysis of values to optimize the number and location of data points
 - Initial mesh determination (feedback on spatial structures)
 - Defining additional points (on risk maps)
 - Positioning samples on radiation maps (use of the correlation between values)

Map of the false negative risk

(declare clean a contaminated area)

- Low risk
- Intermediate risk
- High risk
- Declared above the threshold

A Deep Contamination Example

• First data analysis (in 2007)

4 drilling campaigns

Integration of Historical Information

- Topography of the former military fortification (first generation of installations)
- Correct interpretation of contaminated areas

3D Representation

Added Value of Geostatistics

- Explore and valuate collected data
 - Data cleaning and validation / Handling data anomalies and outliers...
- Get a reliable mapping of the radiological contamination
 - Take the spatial behavior (variographic analysis) into account
 - Assess the precision of the estimation map
 - Refine the estimation map using correlated data (destructive / in situ) and indirect information (historical knowledge)
- Quantify uncertainties on contaminated volumes (or surfaces)
 - Compute the probability of exceeding a radiological threshold
 - Assess the uncertainty on the volumes
- Optimize the investigation effort / sampling strategy

Geovariances in brief...

- World leader in advanced geostatistics
- The most complete solution in geostatistics: Innovative Methodologies, Experts & Software packages

Exact Strak all-in-one software solution for contaminated site characterization

- GIS-based with sampling optimization
- Real-time contamination mapping
- Risk assessment for decision-making process (2D and 3D modeling)

Developed in partnership

5,000 m³