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SUMMARY

In open pit mining, the information collected during production is abundant and generally of good quality. Using
amassive historical production information from ahydrothermal gold deposit, arealistic training image (TI) of
the actual mineralisation has been developed in the mined-out area of the open pit. The objective of devel oping
the training image in the context of Multiple Point Simulations (MPS) isto provide an analogue to simulate
depositsin similar geological settings as well as exploring deeper extensions of the same deposit.

In this application, the training image is used a so as areference for comparison with the simulated images. A
case study is presented and it is based on a complex geological system of a hydrothermal deposit characterised
by a number of distinct facies (pod zones) with high local variability with non-gationarity.

Firstly, 50 mineralisation facies simulations have been performed, thisisfollowed by a second stage 100 block
gold grade simulations. The grade simulations are repeated for each facies independently with adapted
parameters characterizing the statistical distribution and the variograms. The facies and grade simulations are
finally merged by means of a cookie cutting procedure to get 100 realizations of the Au grade.

Two sets of boreholes corresponding to different drilling patterns of inclined boreholes typical of feasibility or
new mining mineral resource definition drilling have been used to condition the smulations. The statistical
anaysis on the distributions of facies proportions and local statistics on similarities with the reality (i.e. the T1)
are provided. The capability to delineate the mineralized aress is al so addressed. Comparing E-type estimates
calculated from the simulated gold grades with the actua in situ production grades based on grade control
drilling alows quantifying the uncertainty associated with the different sampling patterns used for the
alternative techniques.
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INTRODUCTION

Simulations of ore bodies have multiple applications for the mining industry. The most important ones are linked
to uncertainty assessment issues and sampling optimization. Geol ogy and grade have to be smulated
consistently with specific methods. Dueto the high variability associated with the input parameters, eg, grade,
the choice of the method for simulating the geology is critical as smulated models will reproduce quite different
features depending on the method (eg, Object based simulations, Sequential indicator simulations, Truncated
Gaussian smulations). In the case study presented in this paper, a geological model with sufficient level of detail
and a high degree of confidence can be obtained from grade control data at the production stage, which provides
ardiable training image to be used in the Multiple Point Simulation process (MPS) (Strebelle 2002).

In addition to the training image, conditioning data from sampling of existing boreholes were used to control the
simulations of the geology. Grade simulations using turning bands method and conditioned by the same
boreholes were then carried out to obtain realizations of grades for each geological facies. The comparison of the
differences between simulated grades and grades of the training image, considered as the ground truth, allows
quantifying the uncertainty as well as the precision and efficiencies based on the different sampling campaigns.

Based on the orientation study done within the mined out area of the pit, and based on recommended drilling
pattern in the deeper part of the deposit, an E-Type block estimates as well as facies models would be
developed from MPS/ssimulations in the same manner, particularly using the same training image from the
mined out area of the deposit.

METHODOLOGY

Some Theoretical Consderationsfor Block Simulations Used in the Case Study

The Discrete Gaussian Model (DGM) (Chilés and Delfiner 2012) was used to generate directly block values,
without going through an average of n points discretising the block.

Under the hypotheses of the Discrete Gaussian Model (DGM) we can smulate directly block values (Deraisme
et al. 2008). Thismethod isvery efficient asit saves alot of computing time compared to the “traditional “
approach where the block values are obtained by averaging smulated points by discretizing the blocks. The key
hypothesis in the methodology considersthat a point randomly located within ablock is on the average equal to
the block value (Cartier’ srelationship). This property allows usto link point and block values by means of a
linear regression between their Gaussian transforms Yx and Yv. It isillustrated by the schematic figure below
(Figure 1).
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Figure 1: Scheme of the change of support by means of Gaussian anamor phosis between raw variable Z
and itsnormal scoretransformY.

The dope of the linear regression is the coefficient of correlation between both Gaussian variables. It isthe so-
called change of support coefficient r, it has been demonstrated (Emery and Ortiz 2005) that the square of r isthe
dispersion variance of the Gaussian variable regularized on the block (Y (v)):
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The block Gaussian variable Y, is nothing but the Gaussian variable regul arized on the block Y(v) normalized by
the change of support coefficient:
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For the direct block simulation method the input variogram model is obtained from the regularized variogram of
the point Gaussian variable by scaling it by the square of ther coefficient:

Yvy ()= 'Ym;)(h)/rz

Work Flow for the Case Study

The workflow is achieved in three main stages:

o 50 Facies simulations are obtained using MPS technique based on the “Improved Multiple-point Parallel
Algorithm using a List Approach” (Impala) (Straubhaar, et al. 2011). Four levels of multi-grids were chosen to
capture the main features of spatial continuity at different scales. The principle of multi- grids aims at
achieving the smulationsin successive steps starting from a sampling of the final grid taking in each direction
onenode every 2 or 4 ... etc. Once the coarsest grid has been simulated, the nodes of the next grid are filled
and so on. The non-stationarity of the faciesis linked to the blocks proximity to footwall and hanging walls of
the structural blocks. In order to account for the non-gtationarity, the facies proportions resulting from the
training image were transformed using the moving average of facies proportions calculated on the training
image and applied to the simulated grid.

¢ 100 Grade simulations are generated using the turning bands simulation agorithm. A change of support model
of 5mx5mx3m blocks was obtained from a Gaussian anamorphosis model applied to composited data and the
variogram model of gold grade of each facies population.

o Both facies and grade model s in the case study were merged. For each block and each smulation, the
simulated grade assigned to that block and the simulation of same rank isthe simulated grade of the smulated
facies of same rank. For example if the smulation #1 gives the facies 1 and the simulation #2 gives facies 3,
the simulation # 1 will have a grade from the grade simulation #1 of facies 1 and the smulation # 2 will have a
grade from the grade smulation #2 of facies 3.To obtain get 100 grade simulations from only 50 facies
simulations the following rule has been applied, 2 grades have been assigned to each facies simulation, i.e.
grade rank equal to the facies rank and egual to the facies rank + 50.

CASE STUDY

Geology

The mine exploits oxide and fresh hydrothermal mineralization located in Tarkwaian sediments. The
mineralization occursin a Banket Sandstone formation split into 2 main Fault blocks. In each block gold
mineralisation is concentrated in 3 to 4 facies also called pod zones with different characteristicsin terms of
grade distribution and variograms.

The modd of gold concentration isillustrated in Figure 2.
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Figure 2: Schematic vertical section of the mineralization process.

The Database and Process Used

As mentioned above, using the massive historica production data from the hydrothermal gold deposit which
has been mined for several years, arealistic training image of the actual mineralisation has been developed in the
mined-out open pit. The application of MPS to the gold deposit has been carried out.

Basisfor Assessing the Efficiency of the Alternative Techniques

By sampling these simulations based on different boreholes patterns, the experimental distribution of the
estimation errors were obtained. It was therefore possibl e to quantify the ahility of different borehole patternsto
predict accurately the ore tonnage for the respective facies. The results of the analysis have been used to guide
the additional drilling required in the deeper un-mined part of the deposit.

A numeric model of the mined out deposit isavailable at a fine resolution 5mx5mx3m with rocktype and
mineralisation codes (or facies). Thismodd is used for two purposes:
* asatraining image driving the MPS simulations,
e asaground truth reference or redlity, i.e. “actuas’ to which the different estimations and techniques
were compared for their validity and relative effciencies.

MPS Analysis based on Typical Feasibility drilling data Configuration

Figure 3 shows the Fault Block 2 training image, which is characterized by strong non stationarity leading to a
geographical separation between the areas where pod zones may occur.
Two borehole data sets were selected from the mined-out area on aregular pattern of 40mx80m and 20mx40m
and were composited on 1.5m.

In total 7 pod zones were kept (three in the Fault Block 2 and four in the Fault block 3).
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Figure 3: Perspective view of thetraining image of the Fault block 2 with 3 pod zones.

Table 1shows the comparisons of the pod zones proportions between the training image and the sampling based
on the 2 boreholes data sets. Significant statistical differences are observed on the pod zones proportions
between the training image and that estimated from the sampling of the 2 borehol es data sets and especially for
the 40x80m grid.

Table 1: Statistics of the number of data in each pod zone of the Fault Block 2 from thetraining image

and from the sampling by bor eholes on 40mx80m and 20mx40m patter ns. The complement to 100% is
waste.

Fault Block 2
Pod Training Composites dataon Composites dataon
Zone Image 40x80 grid 20x40 grid
Rw2 33785 118 (10.3%) 1547 (14.2%)
(11.6%)
Re2 17785 115 (10.0%) 898 (8.3%)
(6.1%)
Rs2 5370 9 (0.8%) 124 (1.1%)
(1.85%)

M PS Results

Figure 4 shows an example of the simulation of one fault block conditioned by the boreholes of the pattern
20mx40m. It demonstrates agood reproduction of the general shape of the facies with higher variability at
small scale.
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Figure 4: Per spective view of one simulation of the pod zones of the Fault block 2.

The digribution of the pod zone volumes from simulations conditioned by the respective sets of bore holes
(Figure 5), is consistent with the expectation of a significant reduction of the variance around the mean value
when more boreholes are used as input. The variance may be interpreted as the variance of the estimation error
on the volume since the average of simulations can provide anon-biased estimate and each simulation isan
equi-probabl e representation of the unknown.
Thus, the information provided by the simulations is the quantification of the error magnitude for the different
sampling patterns.
In addition to the error variance, the confidence interval at any risk level can be calculated experimentally
which iscritical for capital intensive mining projects.
Table 2 and Figure 6 provide the tonnages cal culated from the training image which are the *actua” tonnages,
since the training image is considered to be thereality. It can be observed that the risk of biasisimportant, when
a pod zone represents a small proportion of thetotal volume. Thisjust points out that MPS does not guarantee
that the simulated facies proportions will match those of the training image, hence the difficulty of estimating
volumes without bias from sparse drilling. However, the denser grid ie 20mx40m) provides a more practical
estimate. The average MPS smulated tons for all the facies combined based on the 20mx40m grid is within +/-
8% standard deviation with a probability of 90% (See Table 2).
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Figure 5: Histograms of the number of simulated blocksfor each pod zone of the Fault Block 2 (from the
50 simulations with sampling pattern 20mx40m at the top and from the 50 simulations with sampling
pattern 40mx80m at the bottom).



Table 2: Actual Tonnage, mean ssimulated Tonnage and Confidence Intervals at therisk level of 90% from

50 simulations of the different pod zones.
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Actua Tonnage 5-095 Tonnage
) Mean Tonnage (Mt)
(MT) Sampling (Mt)
20x40 7,24 15
RwW2 6,99
40x80 75 1,87
20x40 2,82 0,49
RE2 3,73
40x80 2,89 1,24
20x40 0,9 0,48
RS2 1,14
40x80 0,63 0,64
20x40 5,96 0,58
RW3 7,33
40x80 6,89 2,86
20x40 1,62 0,24
RE3 1,66
40x80 1,2 0,6
20x40 0,75 0,18
RS3 0,74
40x80 0,36 0,73
20x40 3,88 0,35
RF3 3,48
40x80 347 1,48
20x40 23,17 3,94
TOTAL 25.07
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Figure 6: Comparison of aver agetonnages per facieswith g5-q95 intervals from simulations conditioned
by both drillholes patter ns.

Additional Useful Uncertainty Analysis

We can also calculate the probabilities of the pod zones conditionally to reality, i.e. the assigned pod zonein the
training image (Table 3). More precisaly two conditional probabilities may be cal cul ated:
» Type 1: knowing ablock isin a pod zone according to the training image, what is the probability that
the simulations have assigned it to the same pod zone.
» Type2: knowing ablock is NOT in a pod zone according to the Training image, what is the probability
that the simulations have assigned it to that pod zone.
These probabilities give an important indication on errors at alocal scale, while the previous statistics were
global. Thetype 1 conditional probability isamost twice higher for the dense sampling pattern than for the
sparse one. For the type 2 conditional probability the advantageis less.

Table 3: Probabilities of blocksto bein same pod zone asin the training image (left columns) and tobein
another pod zone (right column).
Block in SAME faciesasin Tl

Block in OTHER faciesthanin Tl

40x80 20x40 40x80 20x40

Rw2 0.29 0.5 0.1 0.07
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Re2 0.2 0.38 0.05 0.04
Rs2 0.11 0.19 0.01 0.01
Rw3 0.33 0.43 0.16 0.1
Re3 0.13 0.35 0.03 0.03
Rs3 0.09 0.37 0.01 0.01
Rf3 0.19 0.52 0.09 0.06
Average 0.19 0.39 0.06 0.05

Direct Block Simulation Results

Thedirect block simulations of 7 grade distributions for each of the 7 facies have been carried out. Generally
the statistics and variograms are reproduced satisfactorily as shown in the example of Figure 7.
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Figure 7: Example of variograms on Gaussian grade for one pod zone: the double lineis the model input
in the simulation process, the singlelineisthe aver age of the smulated variograms, the dotted lines show
the envelope of the smulated variograms.

After having populated the smulated models with gold (Au) grades, some simple gtatistics can be calculated
like E-type estimates, standard deviation between simulated values and “actua” values. The bias observed in
the facies simulations when the data are too sparse (borehol es patterns of 40mx80m) is till very pronounced on
grades (Table 4).

Table 4: Average tonnages and grade before and after cut-off from 100 grade simulations and actual
figures.

Mean Tonnage (Mt) | g5-g95 Tonnage (Mt) | Mean AU Grade (g/T)
20x40 21.37 21.93-25.87 2.22 The actual
grade profile
0 cutoff 40x80 2156 18.80-28.50 1.84 per level can
be plotted
Actual figures 22.26 2.24 and
compared
20x40 19.78 18.21-21.5 255 with the E-
type
after cutoff 40x80 20.72 16.84-25.04 193 estimate of
_ gold grade
Actual figures 2143 231 calculated

from the 100 s mulations and the percentiles at 5% and 95% risk. Figure 8 shows an acceptable match.
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Figure 8: Vertical profile of actual grade, smulated mean grade and percentiles at 5% and 95% for each
level 3m (level 1 at the pit bottom).

CONCLUSIONS

The application of MPS to mining data has proved to be efficient to produce images of geological variables
characterized by their extreme non stationarity. The main historical challenge of MPS application which is often
pointed out, relatesto deriving geological training images, which does not apply to the case study presented in
this paper, asthetraining image in this case has been obtained from a massive production grade control data. In
this particular application the training image was used twice:

e tocalculate probabilities of different spatial patterns between different facies

e toprovide areference for comparison with the smulated outcomes.

The MPS methodol ogy aims at reproducing geological shapes and transitions between facies at different scales
but there is no guarantee that the statistics of the facies proportions will match those of the training image
especially when only limited drilling data is available for the MPS modeling which could be the case for very
early feasibility mining projects. The study showed that the comparison with the training image makes sense
especially on alocal scale, only if a sufficient number of drillhole data is available for conditioning the
simulations.

The study further showed that when areliable geological/mineraisation training image is available and adequate
representative sample data have been drilled in similar geological unmined extension areas, MPS and block
simulations could assist in providing facies tonnages and grade models for feasibility/ new areas where mining
isyet to be extended. MPS could also assist with sample pattern optimization when atraining image isreadily
available. . Though computer time hasremained historically a bottleneck, currently, this seemsto being
overcome astherequired results are achievable timeoudly with most of software implementation of the
simulation algorithms. Additional mining application case studies of MPS is further recommended as the use of
the methodol ogy has important applications for new exploration projects aswell as mining extensions into
similar geological orebody settings.
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