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SUMMARY  

In open pit mining, the information collected during production is abundant and generally of good quality. Using 
a massive historical production information from a hydrothermal gold deposit, a realistic training image (TI) of 
the actual mineralisation has been developed in the mined-out area of the open pit. The objective of developing 
the training image in the context of Multiple Point Simulations (MPS) is to provide an analogue to simulate 
deposits in similar geological settings as well as exploring deeper extensions of the same deposit. 

In this application, the training image is used also as a reference for comparison with the simulated images. A 
case study is presented and it  is based on a complex geological system  of a hydrothermal deposit characterised 
by  a  number of distinct facies (pod zones)  with high local variability with non-stationarity. 

 Firstly, 50 mineralisation facies simulations have been performed, this is followed by a second stage 100 block 
gold grade simulations. The grade simulations are repeated for each facies independently with adapted 
parameters characterizing the statistical distribution and the variograms. The facies and grade simulations are 
finally merged by means of a cookie cutting procedure to get 100 realizations of the Au grade. 

Two sets of boreholes corresponding to different drilling patterns of inclined boreholes typical of feasibility or 
new mining mineral resource definition drilling have been used to condition the simulations. The statistical 
analysis on the distributions of facies proportions and local statistics on similarities with the reality (i.e. the TI) 
are provided. The capability to delineate the mineralized areas is also addressed. Comparing E-type estimates 
calculated from the simulated gold grades with the actual in situ production grades based on grade control 
drilling allows quantifying the uncertainty associated with  the different sampling patterns used for the 
alternative techniques. 
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INTRODUCTION 
Simulations of ore bodies have multiple applications for the mining industry. The most important ones are linked 
to uncertainty assessment issues and sampling optimization. Geology and grade have to be simulated 
consistently with specific methods. Due to the high variability associated with the input parameters,  eg, grade, 
the choice of the method for simulating the geology is critical  as simulated models will reproduce quite different 
features depending on the method (eg, Object based simulations, Sequential indicator simulations, Truncated 
Gaussian simulations). In the case study presented in this paper, a geological model with sufficient level of detail 
and a high degree of confidence can be obtained from grade control data at the production stage, which provides 
a reliable training image to be used in the Multiple Point Simulation process (MPS) (Strebelle 2002). 
In addition to the training image, conditioning data from sampling of existing boreholes  were used to control the 
simulations of the geology. Grade simulations using turning bands method and conditioned by the same 
boreholes were then carried out to obtain realizations of grades for each geological facies. The comparison of the 
differences between simulated grades and grades of the training image, considered as the ground truth, allows 
quantifying the uncertainty as well as the precision and efficiencies based on the different sampling campaigns. 
 
Based on the orientation study done within the mined out area of the pit,   and based on recommended  drilling 
pattern   in the deeper part of the deposit, an  E-Type block estimates as well as facies models would be 
developed  from MPS/simulations  in the same manner, particularly using the same training image from the 
mined out  area of the deposit. 
 

METHODOLOGY 
 
Some Theoretical Considerations for Block Simulations Used in the Case Study 
 
The Discrete Gaussian Model (DGM) (Chilès and Delfiner 2012) was used to generate directly block values, 
without going through an average of n points discretising the block. 
Under the hypotheses of the Discrete Gaussian Model (DGM) we can simulate directly block values (Deraisme 
et al. 2008). This method is very efficient as it saves a lot of computing time compared to the “traditional “ 
approach where the block values are obtained by averaging simulated points by discretizing the blocks. The key 
hypothesis in the methodology considers that a point randomly located within a block is on the average equal to 
the block value (Cartier’s relationship). This property allows us to link point and block values by means of a 
linear regression between their Gaussian transforms Yx and Yv. It is illustrated by the schematic figure below   
(Figure 1). 
 

 
 
Figure 1: Scheme of the change of support by means of Gaussian anamorphosis between raw variable Z 
and its normal score transform Y. 
 
The slope of the linear regression is the coefficient of correlation between both Gaussian variables. It is the so-
called change of support coefficient r, it has been demonstrated (Emery and Ortiz 2005) that the square of r is the 
dispersion variance of the Gaussian variable regularized on the block (Y(v)): 
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The block Gaussian variable Yv is nothing but the Gaussian variable regularized on the block Y(v) normalized by 
the change of support coefficient: 
 

 
For the direct block simulation method the input variogram model is obtained from the regularized variogram of 
the point Gaussian variable by scaling it by the square of the r coefficient:  

 
 
Work Flow for the Case Study  
 
The workflow is achieved in three main stages: 
• 50 Facies simulations are obtained using MPS technique based on the “Improved Multiple-point Parallel 

Algorithm using a List Approach” (Impala) (Straubhaar, et al. 2011). Four levels of multi-grids were chosen to 
capture the main features of spatial continuity at different scales. The principle of multi- grids aims at  
achieving the simulations in successive steps starting from a sampling of the final grid taking in each direction 
one node every 2 or 4 … etc. Once the coarsest grid has been simulated, the nodes of the next grid are filled 
and so on. The non-stationarity of the facies is linked to the blocks proximity to footwall and hanging walls of 
the structural blocks. In order to account for the non-stationarity, the facies proportions resulting from the 
training image were transformed using the moving average of facies proportions calculated on the training 
image and applied to the simulated grid. 
 

• 100 Grade simulations are generated using the turning bands simulation algorithm. A change of support model 
of 5mx5mx3m blocks was obtained from a Gaussian anamorphosis model applied to composited data and the 
variogram model of gold grade of each facies population.  

 
• Both facies and grade models in the case study were merged. For each block and each simulation, the 

simulated grade assigned to that block and the simulation of same rank is the simulated grade of the simulated 
facies of same rank. For example if the simulation #1 gives the facies 1 and the simulation #2 gives facies 3, 
the simulation # 1 will have a grade from the grade simulation #1 of facies 1 and  the simulation # 2 will have a 
grade from the grade simulation #2 of facies 3.To obtain get 100 grade simulations from only 50 facies 
simulations the following rule has been applied, 2 grades have been assigned to each facies simulation, i.e. 
grade rank equal to the facies rank and equal to the facies rank + 50. 

 

CASE STUDY 

Geology 
The mine exploits oxide and fresh hydrothermal mineralization located in Tarkwaian sediments. The 
mineralization occurs in a Banket Sandstone formation split into 2 main Fault blocks. In each block gold 
mineralisation is concentrated in 3 to 4 facies also called pod zones with different characteristics in terms of 
grade distribution and variograms.  
The model of gold concentration is illustrated in Figure 2. 



J.DERAISME AND W. ASSIBEY-BONSU 
 

4 
 

 
Figure 2: Schematic vertical section of the mineralization process. 

 
The Database and Process Used  
 
 As mentioned above, using the massive historical production data  from the  hydrothermal gold deposit which 
has been mined for several years, a realistic training image of the actual mineralisation has been developed in the 
mined-out open pit. The application of MPS to the gold deposit has been carried out. 
 
Basis for Assessing the Efficiency of the Alternative Techniques 
 
By sampling these simulations based on different boreholes patterns, the experimental distribution of the 
estimation errors were obtained. It was therefore possible to quantify the ability of different borehole patterns to 
predict accurately the ore tonnage for the respective facies. The results of the analysis have been used to guide 
the additional drilling required in the deeper un-mined part of the deposit. 
 
A numeric model of the mined out deposit is available at a fine resolution 5mx5mx3m with rocktype and 
mineralisation codes (or facies). This model is used for two purposes: 

• as a training image driving the MPS simulations,  
• as a ground truth reference or reality, i.e. “actuals” to which the different estimations and techniques 

were  compared for their validity and relative effciencies. 
 

MPS Analysis based on Typical Feasibility drilling data Configuration 
 
 Figure 3 shows the Fault Block 2 training image, which is characterized by strong non stationarity leading to a 
geographical separation between the areas where pod zones may occur. 
Two borehole data sets were selected from the mined-out area on a regular pattern of 40mx80m and 20mx40m 
and were composited on 1.5m. 
In total 7 pod zones were kept (three in the Fault Block 2 and four in the Fault block 3). 
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Figure 3: Perspective view of the training image of the Fault block 2 with 3 pod zones. 

 
 Table 1shows the comparisons of the pod zones proportions between the training image and the sampling based 
on the 2 boreholes data sets. Significant statistical differences are observed on the pod zones proportions 
between the training image and that estimated from the sampling of the 2 boreholes data sets and especially for 
the 40x80m grid. 
 
Table 1: Statistics of the number of data in each pod zone of the Fault Block 2 from the training image 
and from the sampling by boreholes on 40mx80m and 20mx40m patterns. The complement to 100% is 
waste. 

  Fault Block 2 

 Pod 

Zone 

Training 

Image 

Composites data on 

40x80 grid 

Composites data on 

20x40 grid  

Rw2 33785 

(11.6%) 

118 (10.3%) 1547 (14.2%) 

Re2 17785 

(6.1%) 

115 (10.0%) 898 (8.3%) 

Rs2 5370 

(1.85%) 

9 (0.8%) 124 (1.1%) 

 

MPS Results 
 Figure 4 shows an example of the simulation of one fault block conditioned by the boreholes of the pattern 
20mx40m. It demonstrates   a good reproduction of the general shape of the facies with higher variability at 
small scale. 
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 Figure 4: Perspective view of one simulation of the pod zones of the Fault block 2. 
 
The distribution of the pod zone volumes from simulations conditioned by the respective sets of bore holes 
(Figure 5), is consistent with the expectation of a significant reduction of the variance around the mean value 
when more boreholes are used as input. The variance may be interpreted as the variance of the estimation error 
on the volume since the average of simulations can provide a non-biased estimate and each simulation is an 
equi-probable representation of the unknown. 

Thus, the information provided by the simulations is the quantification of the error magnitude for the different 
sampling patterns. 
In addition to the error variance, the confidence interval at any risk level can be calculated experimentally 
which is critical for capital intensive mining projects.  
Table 2 and Figure 6 provide the tonnages calculated from the training image which are the ‘actual” tonnages, 
since the training image is considered to be the reality. It can be observed that the risk of bias is important, when 
a pod zone represents a small proportion of the total volume. This just points out that MPS does not guarantee 
that the simulated facies proportions will match those of the training image, hence the difficulty of estimating 
volumes without bias from sparse drilling. However, the denser grid ie 20mx40m) provides a more practical 
estimate. The average MPS simulated tons for all the facies combined based on the 20mx40m grid is within +/-
8% standard deviation with a probability of 90% (See Table 2).    
 

 
Figure 5: Histograms of the number of simulated blocks for each pod zone of the Fault Block 2 (from the 
50 simulations with sampling pattern 20mx40m at the top and from the 50 simulations with sampling 
pattern 40mx80m at the bottom). 
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Table 2: Actual Tonnage, mean simulated Tonnage and Confidence Intervals at the risk level of 90% from 
50 simulations of the different pod zones. 

  

Actual Tonnage 

(MT) Sampling 
Mean Tonnage (Mt) 

q5-q95 Tonnage 

(Mt) 

RW2 6,99 
20x40 7,24 1,5 

40x80 7,5 1,87 

RE2 3,73 
20x40 2,82 0,49 

40x80 2,89 1,24 

RS2 1,14 
20x40 0,9 0,48 

40x80 0,63 0,64 

RW3 7,33 
20x40 5,96 0,58 

40x80 6,89 2,86 

RE3 1,66 
20x40 1,62 0,24 

40x80 1,2 0,6 

RS3 0,74 
20x40 0,75 0,18 

40x80 0,36 0,73 

RF3 3,48 
20x40 3,88 0,35 

40x80 3,47 1,48 

TOTAL 25.07 
20x40 23,17 3,94 

40x80 22,94 9,7 

 
Figure 6: Comparison of average tonnages per facies with q5-q95 intervals from simulations conditioned 
by both drillholes patterns.  
 
Additional Useful Uncertainty Analysis 
 
We can also calculate the probabilities of the pod zones conditionally to reality, i.e. the assigned pod zone in the 
training image (Table 3). More precisely two conditional probabilities may be calculated: 

• Type 1: knowing a block is in a pod zone according to the training image, what is the probability that 
the simulations have assigned it to the same pod zone.  

• Type 2: knowing a block is NOT in a pod zone according to the Training image, what is the probability 
that the simulations have assigned it to that pod zone. 

These probabilities give an important indication on errors at a local scale, while the previous statistics were 
global. The type 1 conditional probability is almost twice higher for the dense sampling pattern than for the 
sparse one. For the type 2 conditional probability the advantage is less. 
 
Table 3: Probabilities of blocks to be in same pod zone as in the training image (left columns) and to be in 
another pod zone (right column). 

  Block in SAME facies as in TI Block in OTHER facies than in TI 

  40x80 20x40 40x80 20x40 

Rw2 0.29 0.5 0.1 0.07 
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Re2 0.2 0.38 0.05 0.04 

Rs2 0.11 0.19 0.01 0.01 

Rw3 0.33 0.43 0.16 0.1 

Re3 0.13 0.35 0.03 0.03 

Rs3 0.09 0.37 0.01 0.01 

Rf3 0.19 0.52 0.09 0.06 

Average 0.19 0.39 0.06 0.05 

 

Direct Block Simulation Results 
  
The direct block simulations of 7 grade distributions for each of the 7 facies have been carried out. Generally 
the statistics and variograms are reproduced satisfactorily as shown in the example of Figure 7. 
 
 
 
 

 
Figure 7: Example of variograms on Gaussian grade for one pod zone: the double line is the model input 
in the simulation process, the single line is the average of the simulated variograms , the dotted lines show 
the envelope of the simulated variograms. 
 
 After having populated the simulated models with  gold (Au) grades, some simple statistics can be calculated 
like E-type estimates, standard deviation between simulated values and “actual” values. The bias observed in 
the facies simulations when the data are too sparse (boreholes patterns of 40mx80m) is still very pronounced on 
grades (Table 4). 
 
Table 4: Average tonnages and grade before and after cut-off from 100 grade simulations and actual 
figures. 
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Figure 8: Vertical profile of actual grade, simulated mean grade and percentiles at 5% and 95% for each 
level 3m (level 1 at the pit bottom). 
 

CONCLUSIONS 
The application of MPS to mining data has proved to be efficient to produce images of geological variables 
characterized by their extreme non stationarity. The main historical challenge  of MPS application which is often 
pointed out, relates to  deriving geological training images, which does not apply to the case study presented in 
this paper,  as the training image in this case has been obtained from a massive production grade control data. In 
this particular application the training image was  used twice: 

• to calculate probabilities of different spatial patterns between different facies  
• to provide a reference for comparison with the simulated outcomes.  

 
The MPS methodology aims at reproducing geological shapes and transitions between facies at different scales 
but there is no guarantee that the statistics of the facies proportions will match those of the training image 
especially when only limited drilling data is available for the MPS modeling which could be the case for very 
early feasibility mining projects. The study showed that the comparison with the training image makes sense 
especially on a local scale, only if a sufficient number of drillhole data is available for conditioning the 
simulations.  
 
The study further  showed that when a reliable geological/mineralisation training image is available and adequate 
representative sample data have been drilled in similar geological  unmined extension areas,  MPS and block 
simulations could assist in providing  facies tonnages and grade models for feasibility/ new areas where mining  
is yet to be extended.  MPS could also assist with sample pattern optimization when a training image is readily 
available.  .  Though  computer time has remained historically a bottleneck, currently, this seems to being 
overcome   as the required results are achievable timeously with most of software implementation of the 
simulation algorithms. Additional mining application case studies of MPS is further recommended as the use of 
the methodology has important applications for  new exploration projects as well as  mining extensions  into 
similar geological orebody settings. 
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