
INTRODUCTION
BHP Billiton Iron Ore Pty Ltd’s Mount Whaleback
mine is located 5 km west of the town of Newman in the
South Eastern Pilbara region of Western Australia. The
deposit occurs within the Brockman Iron Formation of
the Hamersley Group. The Brockman Iron Formation
as described by Kneeshaw11 has been the most
economically important formation in the Province with
its (unenriched) thickness varying from 500–620 m. It is
composed of an alternating sequence of banded iron

formation (BIF), shale and chert and is divided into
four Members:

(i) Dales Gorge Member (~150 m thick) – alternating
assemblage of 17 BIF and 16 shale macrobands.

(ii) Mount Whaleback Shale Member (~50 m thick)
– a lower zone of four alternating macrobands of
shale and BIF and an upper zone of numerous
mesobands of chert and shale.

(iii) Joffre Member (~360 m thick) – BIF sequence
with only minor shale interbeds that are thinner
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It is recognised by the current JORC (1999) code that
resource classification involves the interaction of numerous
qualitative and quantitative criteria such as data quality,
geological continuity and grade continuity. No prescribed
criteria and rules will work for all situations or even
between different ore types within the same deposit. Also,
these criteria and rules are sometimes applied without a
clear understanding of their appropriateness, accuracy or
correct implementation. For these reasons, case studies are
useful to evaluate and compare criteria commonly used to
assist in resource classification. In this paper, blasthole
data from a selected area of Joffre Member hosted ore of
the Brockman Iron Formation at the Mount Whaleback
orebody are used as the basis of a case study for the above-
mentioned purposes.

Iron grade, in percent, is interpolated from a
blasthole dataset into a block model using ordinary
kriging. Samples are then removed from this blasthole
dataset to produce a random sample grid, a semi-
random sample grid and a regular sample grid. Block
iron grades are obtained using nearest neighbour, inverse
distance squared and ordinary kriging estimation
methods and sequential gaussian simulation, using these
three blasthole data subsets as inputs. This provides
three groups of estimates and one group of simulations
with the ordinary kriging estimate based on the
complete blasthole dataset being considered to represent
the true estimate of iron grades. Also generated during
this process are measurements of the expected error for
each block grade. These measures of error range from
the simple, such as drill spacing, through to more
advanced methodologies such as kriging efficiency and
simulation. The grade and error determined from
estimation and simulation are then compared to the true
grade and true error using graphs and statistics.
In order of increasing accuracy, the block grade

determination methods were nearest neighbour, inverse
distance weighting, ordinary kriging and finally the
average of multiple simulations. Simulation in some
instances doubled the accuracy of individual block
grades when compared to nearest neighbour and inverse
distance weighting estimates. It was found that many
methodologies for determining the error of individual
block grades performed equally well with only methods
such as average drillhole spacing and classification by
search ellipse pass number performing poorly. An
approach on how to convert the above-mentioned error
determinations of individual blocks into a meaningful
JORC classification is also discussed.

Although advanced non-linear resource estimates are
applicable, most iron ore mines are still using relatively
straightforward methods. The use of blasthole data and
some simple linear estimation methods and simple linear-
based error estimates makes this study repeatable for
most iron ore sites and their resource geologists. This style
of investigation is recommended as a useful approach for
the competent person to apply to their deposit and thus
better select, implement and understand the criteria used
for resource classification and provide more consistency
and confidence in the resource classification process.
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than those in the Dales Gorge Member.
(iv) The Yandicoogina Shale Member (~60 m thick)

– interbedded chert and shale.

OVERVIEW OF THE METHODOLOGY
This study uses a 9 x 15 m (with 1 centre hole) blasthole
dataset from a single bench of the Whaleback open pit
to interpolate (via ordinary kriging) iron grades into 20
x 20 m blocks. These grade estimates are considered
reality. The 9 x 15 m blasthole data are subset into less
densely sampled datasets and these are also used to
estimate and simulate grades into the 20 x 20 m blocks
(point simulations are averaged into blocks). Nearest
neighbour, inverse distance squared, ordinary kriging
and sequential gaussian simulation are used in the
estimation and simulation. Various methodologies are
used to determine the accuracy of block grades. All of
the estimation, simulation and data analysis presented
in this paper were generated using Datamine™ and
Isatis™ software.

By comparing the assumed actual (reality) iron
grades to the estimated or simulated iron grades and
the assumed actual error to the error obtained from
estimation or simulation, it can be understood how
various error determination methodologies work
when we try to estimate or simulate grades from wide
spaced drillhole data into a block model.

The three sample data subsets were selected to be
representative of some of the sample patterns and data
densities found at actual iron ore projects. It is
important to note that the three data subsets have
different numbers of data with each dataset having
different mean grades. This must be taken into account
when examining the results. If the sample grades are not
representative of the actual data, no estimation or
simulation technique can compensate for this.

DESCRIPTION OF THE DATASETS USED
A bench (490 RL) of blasthole data from the
Whaleback pit containing Joffre Member hosted ore
was selected for this study. This bench contains
blastholes on a 9 x 15 m (with 1 centre hole) grid with
the sampled portion of each hole being 15 m. To
differentiate ore and waste, a 50% iron cut-off was
used. This boundary includes some material below
cut-off which reflects the normal situation in which
with wide-spaced drilling not all the below cut-off
material can be domained separately. Although the
datasets mentioned below are different, the
interpreted ore/waste boundary is constant.

To obtain a 20 x 20 m regular sample grid, the
blastholes closest to the centre of 20 x 20 m blocks
were selected. To obtain a random, stratified grid, this
process was repeated with a 40 x 40 m grid; however,
in this situation, the blasthole sample was randomly
selected from anywhere within each 40 x 40 m block.
To create a random grid, blastholes were selected at
random within the ore boundary. Plan views and basic
statistics for these datasets are summarised in Fig. 1
and Table 1, respectively.

OVERVIEW OF TECHNICAL TERMS USED

General terms
Mean percentage difference is used to compare paired
data (Eq. 1). When a cut-off grade is applied to a
block model, the mean recovered grade should be
approximately equal to the predicted mean grade,
otherwise the estimate is conditionally biased.

200*AV(ACT – EST)/(ACT + EST) (1)

where AV = absolute value, ACT = actual value, and
EST = estimated value or the average of multiple
simulations.

Error determination methodologies
Error determinations in this paper can be divided into
three main groups: (i) those that can be applied to
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1 Plans of the four datasets used in this study with
symbols representing different percentages of iron. The
upper plan represents all of the 9 ´ 15 m (with 1 hole
centre hole) blasthole data, the upper-mid plan
represents the regular data subset, the lower-mid plan
represents the random stratified data subset and the
lower plan represents the random data subset



inverse distance weighting; (ii) those techniques that
can be applied to either ordinary kriging or inverse
distance interpolation methodologies; and (iii) the
standard deviation of multiple simulations.

Inverse distance error estimation methodologies
This group of error estimation methodologies that are
possible with inverse distance interpolation consist of
weighted distance, distance to the closest sample and
the number of samples used in the resource estimate.
The weighted distance is a weighted average of the
sample to block distances or discretisation points,
where the weights are those applied to samples during
grade interpolation.

Both the weighted distance technique and the
distance to the nearest sample can be applied to actual
distances or distances transformed according to the
search ellipse dimensions. Distance is treated as
proportion between 0 and 1 with 1 representing the
size of the search ellipse. In this way, anisotropy in
grade continuity can be accounted for.

Ordinary kriging error estimation methodologies
The error estimation methodologies applied to
ordinary kriging consist of kriging variance, kriging
efficiency, slope of the regression between ‘actual’ and
‘estimated’ grades, the weighted average variogram
and the modified variance.

Kriging variance is the estimated error variance
produced during ordinary kriging. Kriging efficiency
(Eq. 2) is directly linked to the kriging variance and
the two have a correlation coefficient of 1. The kriging
efficiency is a number between 0 and 1 with 1
representing a perfect estimate.

The slope of the regression between ‘actual’ and
‘estimated’ grades (Eq. 3) should give results close to
the kriging efficiency as the two are closely correlated
(Fig. 2).

KE = (BV – KV)/BV (2)

R = (BV – KV + m)/(BV – KV + 2m) (3)

where BV = theoretical variance of blocks within the
domain, KV = kriging variance, m = the absolute
value of the LaGrange multiplier for each parent cell,
KE = kriging efficiency, and R = slope of the
regression between ‘actual’ and ‘estimated’ grades.

The weighted average variogram is the average
value of the sample weights used in interpolation
multiplied by their corresponding variogram values.

As discussed by Arik,1 the combined variance is
calculated via the square root of the kriging variance
multiplied by the weighted sample to block variance
(Eq. 4). This takes into account the data configuration
as well as the variability of the values that have been
used to estimate a block.

CV KV S*
w
2= ( ) (4)

where CV = combined variance, KV = kriging
variance, and Sw

2 = the weighted sample to block
variance, where the weights are those used in the
ordinary kriging interpolation.

Sequential gaussian simulation
Following multiple realisations, each simulated point
(or points averaged into blocks) contains a
distribution of possible grades. These distributions
can be described via the conditional standard
deviation, inter-quartile range, probabilities above a
cut-off, etc. Simulation is a powerful tool for assesing
uncertainty; however, in this case study, we have only
used the conditional standard deviation. This was
done to provide an error determination compatible
with the error obtained from other linear estimation
techniques discussed in this paper.
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Table 1 Basic statistics of percent iron for the datasets used in this study. Note that regular, random stratified and random
datasets are all subsets of the complete (all data) dataset

Dataset Number of Minimum Maximum Mean
samples % Fe % Fe % Fe SD

All data 507 25·0 68·0 58·4 6·7
Regular 84 36·0 67·1 57·3 7·4
Random stratified 19 43·6 67·7 57·2 7·4
Random 11 50·0 65·6 59·9 5·0

2 Scatter-plot of slope of the regression between
‘actual’ and ‘estimated’ grades versus kriging
variance. This scatter-plot includes block grades
interpolated from the regular, random and random
stratified datasets



VARIOGRAPHY, GAUSSIAN
TRANSFORMATIONS AND OPTIMISING
THE SAMPLE SEARCH STRATEGY

Generation of variograms and variogram fitting

Variograms of percent iron grade
Six horizontal directional variograms (variograms are
calculated as half the average squared difference between
the paired data values) were calculated with a 10 m lag
using all the 9 x 15 m (with 1 hole centre hole) blasthole
data. As can be seen in Fig. 3, these variograms have a
very low nugget and a pronounced anisotropy with the
greatest continuity being east–west and the lowest
continuity being north–south. These variograms were
fitted using a three structure spherical model (Table 2).

Variograms based on percent iron grade transformed to
a gaussian distribution
A frequency inversion with 50 hermite polynomials was
used to transform the percent iron grades into a
gaussian distribution. Because the datasets are small,
the maximum and minimum percent iron values do not
reflect all the possibilities. The maximum and minimum
allowable iron grades (back transformed) were set
identical to the full 9 x 15 m (with 1 hole centre hole)
blasthole dataset. All of the four datasets were
transformed to gaussian distributions in this way.

It could be argued that setting the minimum and
maximum values to that of the full dataset is unduly
favourable for the conditional simulation. For many
commodities (e.g. gold), this would be so; however, in
this ore type, the maximum and minimum iron grades
are well known.

Six variograms based on the gaussian transformed
percent iron grade (using all the data) were generated with
the same parameters as those mentioned above. Often,
especially with nuggetty, highly skewed datasets, the
gaussian transformed variable will produce better
variograms.6 In this case, the distribution of untransformed
iron grades is only slightly negatively skewed and its
variogram has a low nugget effect. For this reason, the
variograms on the raw and gaussian transformed variables
are very similar with the main difference being that the sill
of the gaussian transformed variograms is equal to 1.

Selection of a block size for estimation
Before a search strategy can be optimised, it is
standard practice to optimise the parent block size.
This would involve a different block size for each
dataset. For comparative purposes and to represent

the variety of situations often used in estimation, a
block model made up of 20 x 20 m blocks is selected.
This block model varies from one-quarter the
drillhole spacing of the random grid through to the
same spacing as the regular grid.

While this example uses small block sizes relative to
the random sample grid (common industry practice),
this is generally not recommended. Armstrong and
Champigny2 have clearly demonstrated the inherent
smoothing caused by kriging into small blocks and
warned against using such estimates to calculate
recoverable reserves. Demonstrating this over-
smoothing is not the intention of this paper, rather the
relative performance of various error determination
methods for commonly used sample-grid to block-size
ratios is investigated.

Search ellipse optimisation and selection
To implement inverse distance, ordinary kriging and
sequential gaussian simulation, the samples relevant
to the block being estimated (or the point being
simulated) must be determined. Here this is done by
estimating via ordinary kriging each 20 x 20 m block
with different search ellipse sizes (Table 3) and
recording the number of negative kriging weights, the
slope of the regression between ‘actual’ and
‘estimated’ grades and the kriging variance.

The above-mentioned statistics are summarised,
graphed and the optimal search ellipse is found by
determining where increasing the size of the search
ellipse does not significantly improve the estimate. More
specifically, this is where increasing the size of the search
ellipse does not significantly increase the slope of the
regression between ‘actual’ and ‘estimated’ grades,
decrease the kriging variance and increase the number of
negative kriging weights.14 Fig. 4 represents an example
of one such graph for the regular sample grid.
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3 Horizontal directional variograms and their
corresponding three structure spherical models.
These variograms were generated using all of the
blasthole data. D1 is oriented 0° to 090º, D2 0° to
060°, D3 0° to 030°, D4 0° to 000°, D5 0° to 330°
and D6 0° to 300°

Table 2 Parameters for the three structure spherical variogram
models presented in Fig. 3

Nugget 1
Range 1, east–west 12
Range 1, north–south 17
Sill 1 17
Range 2, east–west 110
Range 2, north–south 37
Sill 2 26·5



The optimal search ellipse selected for the full data
set is 50 x 50 m, for the regular dataset it is 150 x 100
m (east–west and north–south, respectively) and 500 x
300 m (east–west and north–south, respectively) for
the random and random stratified data sets.

IMPLEMENTATION AND ANALYSIS OF
SIMULATION AND ESTIMATION

Implementation of the estimation and simulation
methodologies
Nearest neighbour, inverse distance squared and
ordinary kriging estimations, and sequential gaussian
simulations (Table 4) are implemented below.

The ordinary kriging utilises a block representation
of 64 discrete points per 20 x 20 m block. The sequential
gaussian simulation is based on 50 realisations of points
in 1 x 1 m blocks which are re-blocked up to 20 x 20 m
blocks.

Octant searching is used for the inverse distance
squared interpolation with a minimum of two octants
to be filled before a block is estimated and each octant
can have a maximum of 8 samples. With the ordinary
kriging and sequential gaussian simulation, octant
searching is not used as kriging by its nature partially
declusters the data.8
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Table 3 Search ellipse sizes used to optimise the estimates.
The E–W and N–S search refers to the maximum
distance from the point being estimated. The reference
field refers to the data plotted on the X-axis of Fig. 4

Search reference E–W search N–S search 
number (m) (m)

1 25 12·5
2 25 25
3 50 25
4 50 50
5 75 50
6 75 75
7 100 75
8 100 100
9 150 100

10 150 150
11 200 150
12 200 200
13 250 200
14 250 250
15 300 300

4 Graph of search ellipse number versus statistics used
to optimise the search ellipse size for the regular
sample grid. The search ellipse number refers to
search ellipse sizes in Table 3 and the search ellipse
size increases from left to right. The number of
negative kriging weights is obtained by multiplying
the proportion by the total number of negative
kriging weights (823) for the largest search ellipse

Table 4 Comparison of various types of estimates and simulations with the real data. The search reference field refers to the
search ellipse documented in Table 5. Nearest neighbour = NN, inverse distance squared = ID2, ordinary kriging = OK,
and sequential gaussian simulation = SGS. The mean percentage difference (MPD) is calculated from the estimated or
simulated block grade (point simulations averaged into blocks) compared to the real grades on a block by block basis

Dataset Mean Sample Search Optimal
% Fe mean % Fe MPD reference search Method

All data 58·2 58·4 … 2 Yes OK
Random 59·6 59·9 5·3 4 Yes ID2
Random 59·3 59·9 5·1 5 Yes OK
Random 59·8 59·9 5·4 6 No ID2
Random 59·9 59·9 5·1 6 No OK
Random 59·0 59·9 5·7 10 … NN
Random 59·6 59·9 5·3 2 Yes SGS
Random stratified 57·4 57·17 4·9 4 Yes ID2
Random stratified 57·2 57·17 4·7 5 Yes OK
Random stratified 57·7 57·17 5·5 6 No ID2
Random stratified 57·9 57·17 4·9 6 No OK
Random stratified 58·5 57·17 8·2 10 … NN
Random stratified 57·0 57·17 4·6 5 Yes SGS
Regular 57·4 57·25 3·5 7 Yes ID2
Regular 57·4 57·25 3·1 8 Yes OK
Regular 57·3 57·25 4·5 9 No ID2
Regular 57·3 57·25 4·3 9 No OK
Regular 57·5 57·25 7·4 10 … NN
Regular 57·4 57·25 2·7 8 Yes SGS



Methodology for the comparison between actual and
estimated or simulated grades
Grades for each 20 x 20 m block determined via the
ordinary kriging estimate of the full 9 x 15 m (with 1
centre hole) blasthole dataset were assumed to be the
true grades. There is a high degree of confidence in
this estimate as the slope of the regression between
‘actual’ and ‘estimated’ grades is 99·5 indicating a
conditionally unbiased estimate.12

The mean grade of the actual estimate is compared
against estimates or simulations based on the data
subsets. Here, the mean grade of the sample data must be
kept in mind, as this will limit the ability of the various
techniques to determine the actual mean grade.

The actual block grades are compared against the
grades obtained via the various data subsets and
estimation or simulation methodologies (Table 4). This
comparison is done via the mean percentage difference
(actual versus the estimate or the actual versus the
average of multiple simulations) of all the 20 x 20 m
blocks. This is not a comparison of the global mean but
of the average of block-by-block comparisons. In this
way, the conditional bias of the estimates or simulations
are measured, with a low mean percentage difference
indicating less conditional bias.

Discussion of the results
Nearest neighbour estimation consistently provides the
highest mean percentage difference of the actual percent
iron versus the estimated value (Table 4); however, the
mean grade of the nearest neighbour estimates is relatively
close to the actual grade. This indicates that, while the
block-by-block estimates are conditionally biased, the
nearest neighbour estimation effectively declusters the
data providing an acceptable global estimate of the mean.
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5 Mean percentage difference of actual percent iron
versus the estimated value of blocks estimated via
ordinary kriging with an optimal search strategy.
The upper plan represents the regular dataset, the
middle plan represents the random stratified dataset
and the lower plan represents the random dataset

6 Slope of the regression between ‘actual’ and
‘estimated’ grades of blocks estimated via ordinary
kriging with an optimal search strategy. The upper
plan represents the regular dataset, the middle plan
represents the random stratified dataset and the
lower plan represents the random dataset

Table 5 Search ellipses used during estimation and simulation.
The search reference field refers to the search ellipse
documented in Table 4

Search reference E–W search N–S search Octant 
number (m) (m) search

1 50 50 Yes
2 50 50 No
3 6 6 Yes
4 500 300 Yes
5 500 300 No
6 50 50 Yes
7 150 100 Yes
8 150 100 No
9 20 20 Yes

10 1000 1000 No



The nearest neighbour technique is useful for declustering
data and if a small block size is used it will produce
comparable results to a polygonal declustering.

As might be expected, the best performing linear-
estimate is ordinary kriging with an optimal search
strategy. The use of a non-optimal search strategy in
ordinary kriging downgrades the quality (mean
percentage difference and global mean) of the estimates
significantly. The inverse distance interpolation with a
non-optimal search strategy performs poorly both in
terms of mean percentage difference (actual percent iron
versus the estimated value) and the global mean grade.
The above-mentioned results show that an optimal
search strategy is critical for good interpolation and that
the benefits of ordinary kriging over inverse distance
can be negated by a poor search strategy.

It is a common misconception that the average of
many simulations will provide the same results as
ordinary kriging. As indicated by Guibal6 and
Dimitrakopoulos,4 the ordinary kriging estimate and
average of many simulations will not necessarily be
identical. In this case study, the global means from
sequential gaussian simulation are similar but different
from ordinary kriging. As suggested by Guibal.6 In this
case, the difference is probably due to the fact that
simulation works with a strong stationarity hypothesis;

therefore, the mean grade of the samples will be very
similar to the mean grade of the multiple simulations.

The mean percentage difference (actual percent iron
versus the average of multiple simulations) is
significantly lower than the other estimates for the
regular dataset and slightly lower for the random
stratified dataset. This is probably because the simulation
does not over-smooth the 20 x 20 m block grades. For
the random dataset, the sequential gaussian simulation
does not perform better than the other methods. This is
because this dataset has the least number of samples and
thus the gaussian transform is poorly defined. If a larger
random dataset was used, it would be expected that the
sequential gaussian simulation would out-perform other
methods in terms of mean percentage difference (actual
percent iron versus the average of multiple simulations).

One common approach to classifying resources is
based on using multiple search sizes during interpolation.
Blocks not filled by the smallest search ellipse are re-
estimated with a larger search ellipse; finally, those blocks
not filled by the first two ellipses are estimated with a still
bigger search ellipse. The resource is then classified
according to the pass number as inferred, indicated or
measured.9 One problem with this approach is that it is
often applied without selecting an optimal search for the
first pass. This results in sub-optimal interpolation.
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7 Combined variance for blocks estimated via
ordinary kriging with an optimal search strategy.
The upper plan represents the regular dataset, the
middle plan represents the random stratified dataset
and the lower plan represents the random dataset

8 Conditional standard deviation of 50 realisations
produced via sequential gaussian simulation. The
upper plan represents the regular dataset, the middle
plan represents the random stratified dataset and the
lower plan represents the random dataset



BLOCK GRADE ERROR ESTIMATION

A spatial comparison of actual error to error obtained
from estimation or simulation
Fig. 5 represents plans of the mean percentage difference
of the actual versus estimated iron grades. This can be
compared with the error estimated by the slope of the
regression between ‘actual’ and ‘estimated’ grades (Fig. 6)
the combined variance (Fig. 7) and the conditional
standard deviation of 50 simulations (Fig. 8).

The estimated slope of the regression between
‘actual’ and ‘estimated’ grades (Fig. 6) will produce
comparable spatial results to other error estimators
such as kriging variance and kriging efficiency, which
take into account the spatial relationship of the
samples relative to the block being estimated. As
could be expected, for the regular spaced dataset, the
slope of the regression between ‘actual’ and
‘estimated’ grades indicates highest error around the
edges of the domain, which intuitively is reasonable.

The combined variance (Fig. 7) and the conditional
standard deviation include grade information as well
as spatial information in estimating or simulating
uncertainty. Because of this characteristic, the spatial
distribution of errors based on these methodologies is
different to spatially based error estimates such as the
kriging variance.

As can be seen by Figs. 5–8, there appears to be
little or no spatial relationship between the errors
obtained from estimation or simulation and the actual
errors. This is partially because the kriging variance
and the conditional standard deviation represent the
distribution of errors for a block and statistically the
observed single error is simply one possible realisation
from this distribution.

A statistical comparison of actual error to error
obtained from estimation or simulation
Because a clear relationship between errors obtained
from estimation or simulation and actual errors is
difficult to visualise, another way must be chosen to
evaluate the various error determination methodologies.
As presented in Fig. 9, we have chosen to plot scatter-
plots of mean percentage difference (actual percent iron
versus the estimated value or the actual versus the
average of multiple simulations) versus the error estimate

or the conditional standard deviation. These plots are
not all presented below, but they are summarised in
Table 6 via correlation coefficients. One additional
benefit of these scatter-plots is that they are a calibration
of the error determined from estimation or simulation
with the actual error.

Of the error estimates possible for inverse distance
interpolation, the number of samples provides the
highest correlation with mean percentage difference
(actual percent iron versus the estimated value). In
this situation, the number of samples within the
optimised search gives an indication of the spatial
distribution of the samples through the use of octant
searching. Without an optimal search ellipse or octant
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Table 6 Correlation coefficients of various error determination methodologies versus the mean percentage difference (actual percent
iron versus the estimated value or actual versus the average of multiple simulations). The ordinary kriging, simulation and
inverse distance weighting all utilise optimal search ellipse sizes

Error estimate OK SGS ID2

Weighted actual distance 0·1823 … 0·1113
Weighted transformed distance 0·0951 … –0·0421
Weighted average variogram 0·2186 … …
Slope –0·1701 … …
Combined variance 0·2025 … …
Transformed distance to closest sample 0·0739 … 0·1126
Kriging efficiency –0·2222 … …
Non-transformed distance to closest sample 0·1157 … 0·1298
Kriging variance 0·2222 … …
Number of samples … … –0·2527
Conditional standard deviation 0·20

9 Slope of the regression between ‘actual’ and
‘estimated’ grades versus mean percentage difference
(actual percent iron versus the estimated value). The
dark line is a conditional expectation curve of the data
plotted. The conditional expectation curve is obtained
by partitioning the values of one scatterplot axis into
regular sized bins. For each of these bins the other
scatterplot variable is averaged and thus the best-fit
line obtained



searching this method would not perform as well. For
regular spaced sample grids, the distance to the
nearest sample (drillhole spacing) would produce
similar results to the number of samples.

For ordinary kriging estimates, the kriging variance,
kriging efficiency and the slope of the regression between
‘actual’ and ‘estimated’ grades all perform comparatively
well and these are the most commonly accepted
measures of error used in ordinary kriging.12 The
conditional standard deviation from sequential gaussian
simulation is similar (correlation with the actual error) to
the kriging variance. The weighted average variogram
also performs well, but is less commonly used for error
estimation than kriging variance or simulation.

The combined variance has performed well and
may out-perform the other error estimation methods
in highly skewed distributions where the domains are
not completely stationary. This is because the method
takes into account the spatial as well as grade
information. However, in areas of poor stationarity,
perhaps a non-linear interpolation would be more
appropriate than ordinary kriging.17

ASSUMPTIONS ON THE DISTRIBUTION
OF ERRORS
One of the benefits of conditional simulation is that a
full distribution of possible grades or possible errors
can be generated for each block being simulated. With
kriging variance, we have the variance of the
distribution of errors but we do not know the shape of
the error distribution. Thus, in order to classify blocks
according to confidence limits,13 assumptions must be
made about the shape of the distribution of errors.
Typically, the chosen error distribution is gaussian;
however, the assumption of a gaussian distribution
will not fit perfectly with iron grades, as the maximum
possible iron grade is 70% and the distribution is
negatively skewed.

To understand better the shape of the distribution of
errors (for the ordinary kriging estimate), we have
subtracted the actual percent iron from the ordinary
kriging (optimal search) estimated iron and plotted
histograms of this data for the three data subsets (Fig.
10). Rather than accepting a gaussian distribution of
errors, we can assume that the shape of these histograms
is representative of individual block error distributions.
For each ordinary kriging block estimate, we have a
kriging variance and a mean error of zero. With the
above assumption of the skewness of the distribution,
we have fully described the distribution of errors for
each block. It should be kept in mind that, because the
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10 Histograms of the actual percent iron grades minus
the ordinary kriged block estimates. The upper
histogram represents the combined regular, random
stratified and random datasets, the upper-mid
histogram represents the regular dataset, the lower-
mid histogram represents the random-stratified
dataset and the lower histogram represents random
dataset



mean grades of the data subsets are different to the
actual data, this could bias the results. In this case, the
conclusions are considered representative due to the
nature of the mineralisation (i.e. negatively skewed with
a maximum iron grade of 70%).

The following example of a hypothetical kriged
block estimate of 59% Fe and a kriging variance of 10
illustrates how we can use the above-mentioned
information. If we assume that the distribution of
errors for this hypothetical block is gaussian, we
would have a mean error (actual–estimate) of 0·0 ± 6%
Fe at 95% confidence; however, the error assuming a
slightly negatively skewed error distribution would be
0·0 ± 5–8% Fe at 95% confidence.

LIMITATIONS AND NEXT STEPS

Definition of grade boundaries
The error estimation and simulation methodologies
used above can only partially account for the error in
the definition of the grade boundary. In this study, the
grade boundary was the same for all datasets;
however, as described by Stegman,16 the error in the
definition of the grade boundary will often be greater
than the error in the estimation of grades. Grade
boundary error can be determined in various ways
such as, indicators, simulations, removing data7 and
simple mathematical formulas.3

Data selection
Although the use of the two-dimensional dataset
should not significantly affect the comparison of
techniques presented in this paper, estimated and
simulated block grades would be less accurate  than if
a full three-dimensional data set had been used.

In using blasthole data without modification, we
assume that the difference in nugget and the sample
support between blastholes and drillholes is not great.
In addition, there is assumed to be no bias in either
drillhole or blasthole data.

Only iron was used in this study; however, in
general, several of the major contaminants such as
aluminium, silica and phosphorus would need to be
studied before making conclusions about resource
classification. Typically, the most variable and risky
element would be the basis for the resource
classification.

The three datasets contain different numbers of
samples and different mean grades. The grids were
selected to be comparable to actual examples on site.
In these examples, the mean grade of the samples are
quite different from the actual grades. It could be
argued that for a more valid comparison between
methods that each dataset should have had a similar
number of samples with similar mean grades. This
would minimise the potential for results to be biased
by using datasets with different mean grades.

Another approach towards better understanding
the limits of the data selected would be to re-select
(several times) the three sample grids with the same

number of samples and from the same parent dataset.
It may be found that this approach gives a better
estimate of uncertainty than what has been presented
in this paper.

Variography
One variogram based on the full dataset was used for
all data subsets. This could be argued as being overly
favourable for the ordinary kriging estimate; however,
in a typical mining situation (where drillhole spacing
is significantly wider than the blasthole data) due to
the presence of blasthole data, the variogram is
generally well known. Uncertainty in the variogram
definition could be investigated by repeating the above
study with variograms representing maximal and
minimal plausible continuity.

Resource classification
Authors have used various techniques to convert
simulations or estimated error into resource classifications.
For example, Krige12 proposed that a block kriging
efficiency less than 0·3 is inferred, 0·3–0·5 is indicated and
above 0·5 is measured. Mwasinga13 provided more
examples of how the various error estimation
methodologies can be used to classify individual blocks.

While classifying individual blocks is a necessary step,
these classifications are not the final step. If individual
blocks are classified, unrealistic classifications such as
bulls-eyes around data can result. The individual blocks
must be grouped into zones of similar confidence. This
can be done visually with wire-framing or mathematically
via erosion and dilation. Once blocks are grouped, the
error of realistic production tonnages (e.g. 1 year’s
production) can be estimated or obtained from the
analysis of multiple simulations. To estimate the error of
combined blocks, the the two-dimensional estimation
technique of Journel and Huijbregts10 can be used. This
technique takes into account error in grade estimation,
grade boundary location, tonnage and specific gravity.
Ideally, production data would also be available for
calibration. Initially, this work can be time consuming, as
it requires several iterations to determine the appropriate
individual block classifications.

CONCLUSIONS
The global mean iron grade of averaged multiple
simulations and all estimation methods was similar.
With individual blocks the average of multiple
simulations generally reproduced most closely the
actual grades and of the linear estimators ordinary
kriging outperformed inverse distance and nearest-
neighbour estimations.

Unless ordinary kriging uses an optimal search
routine, the results will be little or no better than a
well-implemented inverse-distance weighting estimate.
Thus, resource classification based on different blocks
being estimated by different sized search ellipses
should only be used with an optimal search strategy.

Of the error estimation methodologies for inverse-
distance squared interpolation, the number of samples
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used in octant searching produced the most accurate
estimates of errors. However, this technique is highly
dependent on an optimal search strategy. Of the error
estimation techniques used in kriging, kriging
variance, kriging efficiency and the slope of the
regression between ‘actual’ and ‘estimated’ grades
generally out-performed other techniques. In domains
with poor stationarity, the combined variance may
out-perform other ordinary kriging-based error
estimates that only take into account the spatial
location of samples. The conditional standard
deviation from sequential gaussian simulation
produced comparable results to the kriging variance.

The small number of samples used limits all of the
above-mentioned grade estimation techniques and the
sequential gaussian simulation. This is because if the
input data are not representative, no estimation or
simulation technique will compensate for this.
However, in this case study, higher and lower grades
than the input data were permitted in the back
transformation from gaussian values. This resulted in
the simulation containing some grades higher and
lower than the sample data. Despite this positive
characteristic of simulation, the random and random-
stratified datsets used were too small to implement
simulation properly. This is because the assumption of
stationarity is even stronger in simulation than for
ordinary kriging. Also, a meaningful histogram (to
gaussian transform grades) could not be obtained
from 10–20 samples.

The benefit of better understanding the shape of
the distribution of errors for kriging estimates was
demonstrated and the dangers of assuming a gaussian
distribution of errors emphasised. Finally, the error
determined for individual blocks needs to be classified
and combined into groups of blocks that form
packages of meaningful size to the mining operation.
Ultimately, it is these groups of blocks, and not
individual blocks, that are classified according to the
JORC9 criteria.

This study demonstrates the performance of
sequential gaussian simulation and various grade and
error estimation methodologies in the study area. As a
result of these findings, the competent person can
determine better which of these methods is
appropriate for his or her purpose.
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