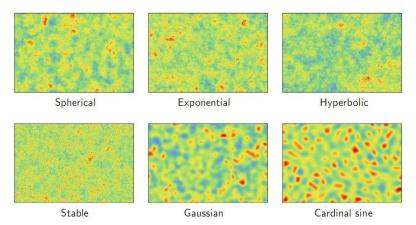


PluriGaussian Model used for simulating heterogeneous deposits



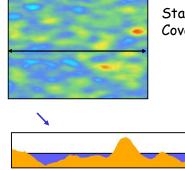
- Multigaussian provides an optimal framework for various simulations models:
 - Spectral method
 - Turning bands method
 - Sequential method
- Able to:
 - Operate on "continuous" variables
 - Simulate most of the known covariances / variograms
 - Honor conditioning data (through kriging)

Multigaussian framework

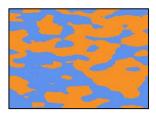
Able to simulate most of covariances / variograms

Courtesy from Ch. Lantuejoul

How to simulate categorical variable (facies)?

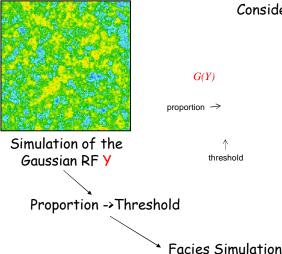

- Turn the facies into numerical variable through some indicators and adapt the simulation method:
 SGS -> SIS
- Consider the facies as a transformed version of underlying Gaussian random function(s): Truncated Gaussian (TG) & Plurigaussian (PGS)

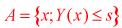
TRUNCATED GAUSSIAN & PLURIGAUSSIAN SIMULATIONS

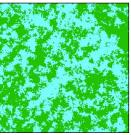


Truncated Gaussian Model

Threshold on the Gaussian RF

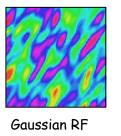

Stationary normalized Gaussian RF Y Covariance $\rho(h)$ or $\gamma(h)$

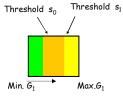

Random Set A Proportions pCovariances $K_A(h)$ or $\gamma_A(h)$



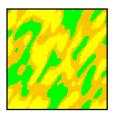
Proportions and thresholds

Considering the blue facies

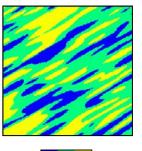




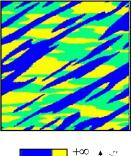
Several facies

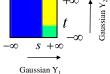

 $p_2+p_1 = G(s_1)$ $p_1 = G(s_0)$

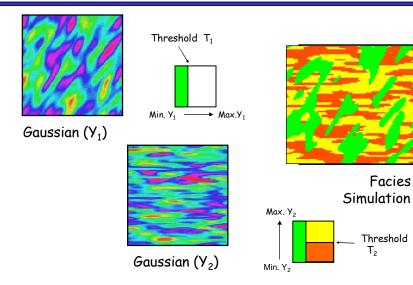
Lithotype rule

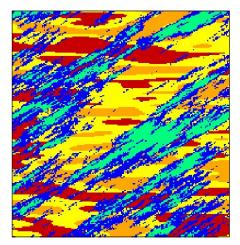

Facies Simulation

Use ONE underlying Gaussian RF to simulate several facies


From Mono to Plurigaussian


Mono-Gaussian


PluriGaussian

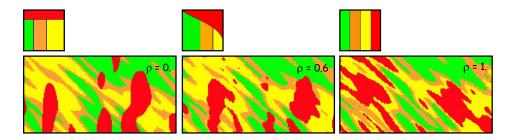


Three facies - Two gaussians

Several facies

Simulation with:

- 5 facies
- 2 Gaussian RF:
 - different covariances
 - · different anisotropies

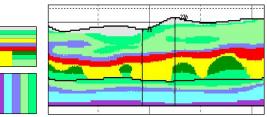

- Non-stationarity
 - Use stationary underlying Gaussian random function
 - Consider non-constant proportions / thresholds
- Conditioning to data:
 - based on simulations of underlying Gaussian random functions
 - Gaussian random functions can be conditioned to hard data
 - Translate facies data into Gaussian values (Gibbs sampler)
 - Possibility to handle hard and soft information

CORRELATED UNDERLYING GAUSSIAN RANDOM FUNCTIONS

Correlated underlying GRF

The underlying gaussian RF are intrinsically correlated:

$$\begin{cases} Y_1(x) = Z_1(x) \\ Y_2(x) = \rho Z_1(x) + \sqrt{(1 - \rho^2)} Z_2(x) \\ Z_1 \text{ and } Z_2 \text{ not correlated} \end{cases}$$


Correlated underlying GRF

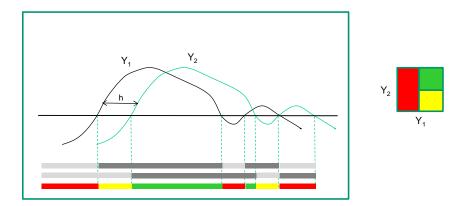
Paradox: algal mounds

Non skeletal carbonate facies
Quartz sand facies
Skeletal bioclastic facies
Algal mound facies (final stage)
Algal mound facies (initial stage)
Incipient algal mounds
Intermediate facies
Sponge facies
Black laminated shales

Interpreted cross-section

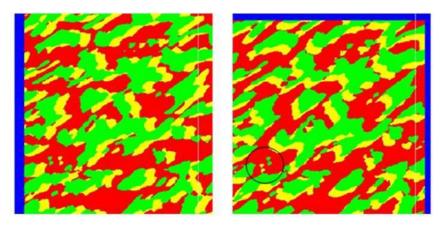
Simulation with correlated GRFs

Courtesy from A. Galli et al.



SHIFTED PLURIGAUSSIAN SIMULATIONS

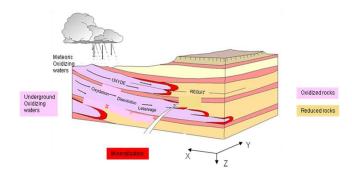
Shifted PGS


Y(x) designates the first GRF, the second GRF is given by Y(x+sh)

Shifted PGS

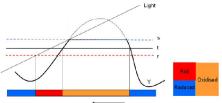
Two examples of shifted PGS

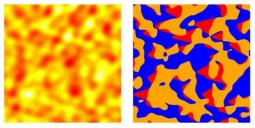
No systematic contact between yellow and green facies



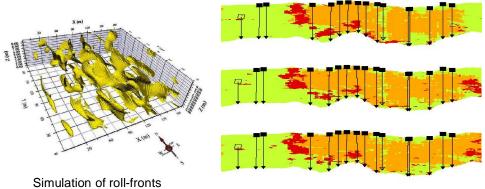
SHADOWED PLURIGAUSSIAN SIMULATIONS

Shadowed PGS


Simulation of Uranium roll-fronts


Courtesy from V. Langlais (AREVA)

• The first GRF is considered as the relief (truncated below "s"), the second GRF is the shadow (on the reference plane "r")



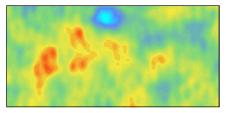
Fluid direction

Shadowed PGS

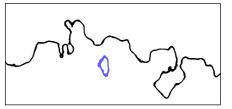
3 conditional simulations

Courtesy from AREVA

APPLICATIONS OF PGS



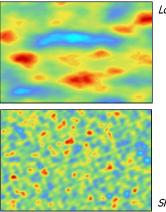
Applications


- The following illustrations are obtained by making specific choices for:
 - The covariances of the GRFs
 - The lithotype rule
 - The proportions and thresholds
 - The non-stationarity

Narrow threshold interval

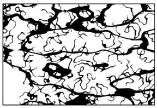
Simulation: meander & oxbow lake

Lower & upper thresholds


Lithotype Rule

A meandering river

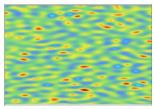
Definition of a Complex Random Set



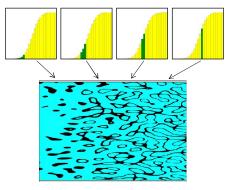
Long range GRF

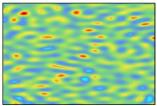
Lithotype Rule

Short range GRF

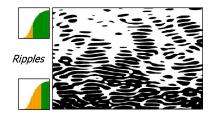

Mixed scale texture

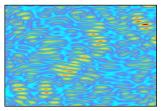
Tidal channel on tidal flat, Coos Bay, Oregon


Non-stationary threshold interval


One stationary GRF with anisotropic periodic variogram

Constant proportion - Non-stationary thresholds





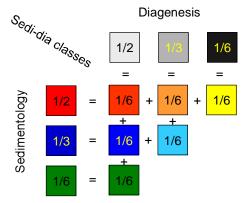
Non-stationary threshold interval

Anisotropic periodic GRF Y₀

$Y_1 = Gradient \ of \ Y_0$

Ripples on tidal flat, SE Alaska

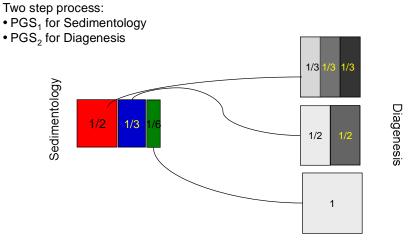
JOINT SIMULATION OF TWO PHENOMENA: BI-PGS



Simulate heterogeneities :

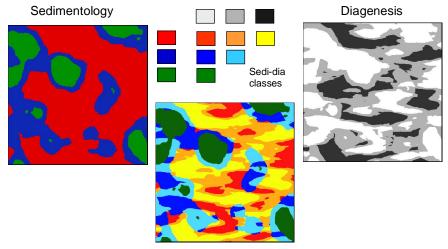
- Two indicators reflecting two linked processes:
 - Sedimentology
 - Diagenesis
- Conditioned by heterotopic data set:
 - All samples have Sedimentology information
 - Only few have Diagenesis index

Joint proportions

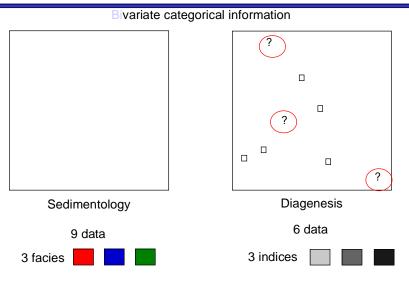


Proportions of

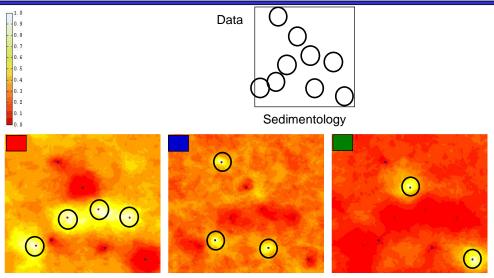
- Sedimentology facies
- Diagenesis indices
- Sedimentology-Diagenesis classes


Bi-Plurigaussian Simulation

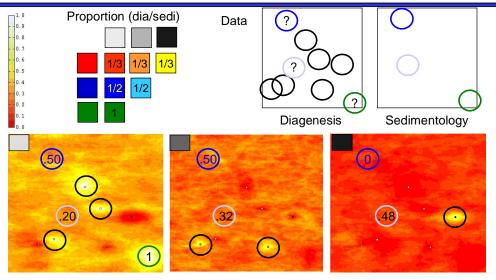
Proportions of Diagenesis are conditional to Sedimentology facies


Bi-Plurigaussian Simulation

Final conditional simulation

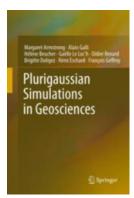


Heterotopic Data Set

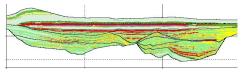


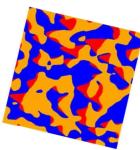
Probability of the sedimentary facies

Probability of the diagenetic index

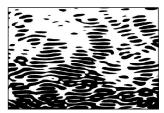

References

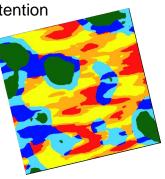
- Download PluriDemo package for:
 - Variography
 - PuriGaussian
 - Pluri-Sets


From:


http://www.geosciences.minesparistech.fr/web/en/organization/ presentation-of-the-group-2/mainprojects/pluridemo/projet-pluridemo Plurigaussian Simulations in Geosciences, 2nd edition

Armstrong, M., Galli, A., Beucher, H., Loc'h, G., Renard, D., Doligez, B., Eschard, R., Geffroy, F.





Thank you for your attention

