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ABSTRACT 

Future development of kimberlite mines is now focused on mining at deeper levels. The consequences are 
increased difficulty and costs of the mining operations. The decisions on investments require accurate 
resource evaluation and quantification of the risk. In the decision process the first step consists in 
choosing the number of boreholes sampling the pipe relative to the level of uncertainty that can be 
accepted. 

The uncertainty in the volumes of rocks of different types can be assessed as soon as we can estimate 
these volumes from a given borehole layout and calculate the error by means of its variance for instance. 
In theory this can be achieved by using geostatistical techniques (“transitive theory”), but in practice the 
calculation of the error on volumes can be achieved in very particular cases, assuming some regular 
sampling patterns.  

A different approach has been chosen based on simulations, giving maximum flexibility to reproduce the 
reality of the sampling procedure. The idea is to simulate the geometry of several “possible” pipes with 
their internal geology and estimate them by kriging. Several experimental errors are obtained on which 
risk analysis can be performed. 

The aim is to find a feasible method to perform the simulations with reasonable chance to correctly 
represent the reality, without data on the pipe extension. The methodology applied is based on some 
hypotheses that can be assessed by the geologist as well as by the geostatistician. The procedure assumes 
a geological model based on current knowledge including appropriate geostatistical variation. What make 
these simulations specific and powerful in this case comes from the fact that the boundaries between the 
different rock-types can be simulated using a transformation of the real 3D space into a 2D space defined 
by means of polar coordinates. Ultimate transformations to account for smoother variations with 
morphological transformations allow the generation of  realistic pipe geometries on which sampling 
pattern can be used to evaluate the estimation errors.  

By estimating the simulated pipe geometries with different boreholes layouts a risk curve expressing the 
uncertainty in the volumes of the different rock-types versus the number of holes can be developed.  
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INTRODUCTION 
South African diamond mining of kimberlites dates back over 100 years.  During this time, several 

of the pipes have been depleted and the mines closed, but a number of mines have extensive resources  at 
depths below their current infrastructural capacity. Exploitation of these resources will require substantial 
capital investment. Risk has become a major driving force in evaluation of these resources. Any 
delineation or drilling program has to ensure that the delineated resource will be within acceptable risk 
levels. Designing drilling campaigns has usually been a subjective process. Following recent  
investigations , a methodology to plan drilling programs to meet acceptable risk targets will be 
demonstrated.  

This risk can be measured in different ways, all related to the uncertainty on the recoverable 
volumes that can be estimated from borehole data. The aim of the method is then to quantify the 
relationship between the number of boreholes planned and the confidence in the estimates of the annual 
production, roughly corresponding to a mining level.  
All of the calculations and graphic output generated was made using the Isatis1 geostatistical software. 
The illustrations come from an implementation on two different mines. 

METHODOLOGY 
The uncertainty or risk is nothing but a measure of the difference between estimation and reality. 

In geostatistics this corresponds to the concept of estimation error. On a basis of a variogram it is possible 
to calculate, in advance, the variance of this error, called the kriging variance. In this case the estimation 
variance on the volume (level by level) of different rock-types is the issue of concern. Such a problem of 
volume estimation can be solved by means of transitive geostatistics in the case of regular sampling. As it 
is not the case, calculating the estimation variance by applying ordinary kriging, which does not in theory 
require any data could be considered. However, this would imply that the volume on which the estimation 
is performed is fixed. As the volume is the object of the estimation, this implication is invalid. 

The approach adopted was to calculate “experimental errors” by comparing the reality and an 
estimate of the reality based on borehole data. As the reality is unknown, a simulation is substituted for 
reality to produce a reasonable estimate of the error. The simulation must reproduce the spatial structure 
of correlation, i.e. the variogram, of the actual geology.  

The difficulty is that there are no numeric data in the volumes under investigation, i.e., the lower 
extensions of the pipe. However a geological model with a good level of confidence is available. Whilst 
the geological model simplifies the irregularity of the boundaries, it is a suitable base case that can be 
used. In the simulation study, variations around the base case can be generated, using the geostatistical 
characteristics of the levels above the zone to be simulated. Geological mapping on the current and 
historical mining levels provide the geostatistical input to the simulation. 

The geometry of the pipe and the internal geological geometries are represented by their 
boundaries. The simulation technique can quite easily handle such variables because of the relatively 
regular nature of kimberlite pipes. On a practical basis, it is geologically acceptable to consider that, at the 
different levels, a radius from a virtual center point defines the boundaries between the rock-types. In 
order to obtain a simulated block model in 3D space, it is necessary to perform the simulations in a 2D 
space with polar coordinates. In this new working space it is possible to express, and consequently 
simulate or estimate, the radius as a function of the azimuth and the level. After having performed the 
simulation/or the estimation of the radius the simulation reverts to the original 3D space, by assigning the 
rock-type code to all blocks with a given azimuth and level up to the simulated/estimated radius.  

The different steps are: 
� Simulation of the pipe/internal geometries: 

o Calculation of the radius of the boundaries from the geological model 

o Geostatistical simulations of residuals that are added to the Base Case 
model 

o Assignment of the rock-types for each block in the simulated models 

� Sampling from pseudo boreholes and determination of the intercepts with the 
simulated boundaries 
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� Estimation of the radius of the boundaries using the borehole intercepts for each 
simulation. 

� Statistical analysis of the results 

GEOSTATISTICAL PROCEDURE  

Simulation of the pipe geometries 

Figure 1 is a simplified representation of the Base Case model that has been used for one of the 
mines. Three different rock-types with the most significant differences in terms of economic potential 
were retained from the original model.  

 
Figure 1. Geological model of three rock-types at 3 levels  

 
The geometry of the pipe appears as a rather simple shape with dimensions increasing from bottom 

to top. This is coherent with current understanding of emplacement mechanisms of kimberlite pipes. 
(Field and al 19982). For any level the shape can be described by means of a parametric function where 
the coordinates of the boundary depends on the azimuth and the radius from a center point. If the radii 
were constant, a cone with a circular base would result. By varying the radius with the azimuth and the 
level, any required  shape can be obtained, the only condition being that a one to one relationship exists 
between radius and azimuth. By digitizing the boundary from the input geological model at one degree 
intervals a mathematical expression for the pipe boundary can be obtained. By superimposing a 3D block 
model each block can be described as belonging inside or outside the pipe. The vertical resolution of the 
block model should coincide with the resolution of the geological model, chosen as the height of the blast 
levels in this case.  

 
As explained in the previous section, the uncertainty in the geometry will be characterized by 

adding some fluctuation around the geological model. The representation by a parametric function of 
(azimuth, radius, level) is perfectly suitable to that task. The radius is considered as a regionalized 
variable in the (azimuth, level) bi-dimensional space. As with all regionalized variables, this variable can 
then be processed by means of geostatistical simulation and kriging. It is appropriate to adopt a non-
stationary  viewpoint such  that the geometry can be guided by the geological model. The radius of the 
pipe boundary is then decomposed into the sum of the radius from the geological model and a stationary 
0-mean residual. The geostatistical characteristics derived from the informed blocks higher up in the body 
are used to characterize these residuals as there are no data available in the area to be simulated. 

Detailed mapping of the pipe boundaries of a few production levels above the area of interest are 
available. Using these, it is possible to calculate the variogram of the radius as a function of the azimuth 
for each level. As expected these variograms show similarities, and in this case a model was fitted to the 
average variogram. The fitted variogram model is a stationary model with two structures one with a short 
range and another one with a long range. Beyond a “distance” of 100 degrees the increasing of the 
variogram reveals the non-stationarity. Making a non-stationary model with generalized covariances is a 
difficult task with these data.  A more simplified approach was preferred, considering the short range 
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structure as representing the random fluctuations of the residuals and relating the long range structure to 
the trend.  
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Figure 2. Average horizontal variogram of the radius of the pipe boundary. 

 
An unusual aspect of the geostatistical analysis of this particular variable , is its “circular” aspect: 

i.e. the radius is defined modulus 2π, the maximum distance for considering the correlation should be 180 
degrees and not 360. A variogram model suitable for this feature is not known. By using the variogram 
the focus is on the short distances, making the cyclic type of the variable of minor importance in the 
geostatistical modeling. At the simulation stage this feature cannot be ignored as it is expected that the 
simulation at azimuth 359 should be highly correlated to the simulation at azimuth 0. The variogram 
implies no correlation at the pseudo distance of 359 degrees. In order to overcome this difficulty the 
simulation was undertaken in two steps. Firstly a non-conditional simulation of the residuals from 0 to 
180 degrees was performed. Secondly, the simulated residuals for 0 and 180 degrees were retained as 
input data for making conditional simulations from 181 to 359 degrees. 

The simulation of the residuals is achieved by using the turning bands3 method in the 2D space 
(azimuth-level). This requires the variogram in that space. In the absence of real data that can be used to 
determine the spatial structure along the vertical axis a empirical approach was adopted. Most of the 
vertical variations of the pipe geometry come from the trend and consequently the variations for levels in 
close vertical proximity of each other would be similar. By an iterative process vertical range was 
arbitrarily fixed to reproduce this property. 

Figure 3 shows the outlines of the geological model and a simulated pipe boundary for one level.  

 
Figure 3. Simulated pipe boundary with the outlined boundary from the geological model. 

 
The generation of the simulated geometries is obtained by means of stochastic simulation that 

produces characteristics that render these images unrealistic. In particular, the jagged outlines that lead to 
reversed slopes in vertical sections (above 90 degrees). I.e. pipe dimensions not consistent with an 
increase from bottom to top.  Instead of introducing such constraints (regularity of the outline, admissible 
slopes) at the simulation stage, a post-processing of the simulated models aiming at regularizing the 
geometry according to shape criteria has been applied. These techniques originate from mathematical 
morphology methods. Figure 4 shows a section before and after such transformation. The resultant 
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simulated models are considered as acceptable from a geological and statistical perspective, since they 
produce different images of the same geological phenomenon with a reasonable variability. 

 
Figure 4. Vertical simulation of the pipe before and after regularization of the outlines. 

 
Once the pipe geometry has been simulated, the simulation of the internal geology has to be 

attempted. This is beyond the scope of this  paper, suffice to say that the principle of the method for 
simulating the pipe perimeter cannot be simply extended to simulating any geometry. The real geology 
must be simplified in any case, but the ability to adapt the approach used for the pipe boundary to internal 
geology depends on the general shape of the internal boundary. In the example shown in Figure 1, the 
internal waste at the center of the pipe “the croissant” cannot be considered as an “internal pipe” that 
could be patched inside the kimberlite pipe as there is no center point from which one can draw a radius 
that has only one intersect with the boundary of that geology. The method to simulate the internal geology 
was adapted from the pipe simulation by intersecting two “pseudo pipes” generated from the external and 
the internal radius of the “croissant”. It is certainly not suggested that any geometry can be simulated 
using this method, however some flexibility exists as long as the approximation does not contradict the 
major features of the geology. 
 
Estimation from Boreholes 
 

After multiple simulations of the pipe and its internal geology a number of times, different ways of 
sampling can be considered and the estimation of the volumes for each rock type using these samples can 
be undertaken. If the borehole layout corresponding to a given sampling scenario is fixed, the same 
estimation procedure can be applied to each simulation. The simulation plays the role of the unknown 
reality, so the difference between the simulated and the estimated volume represents the estimation error. 
By repeating the process on every simulation many outcomes of the estimation error are obtained on 
which statistics can be calculated. 

The estimation method is based on kriging by following a similar approach to the simulation step., 
i.e.  the radius in the 2D (azimuth-level) space is estimated. These data are derived from the coordinates 
of the intercepts of the boreholes with the simulated pipe. The difference from the simulation step is that 
the geological model is ignored and the radius is estimated directly, rather than using the model plus 
residual. By using ordinary kriging with moving neighborhood, the variogram model of the type shown in 
Figure 2 can be used instead of a really non-stationary model, which is more difficult to infer. 

The borehole layouts have been designed taking cognizance of  technical constraints. For both 
mines studied to date two different types of layouts have been considered (Figure 5). 

For the first mine (on the left) the boreholes are drilled horizontally in fans from two opposite sides 
of the pipe. The sampling scenarios deal with the number of holes per level and the number of levels. It 
was also considered that some boreholes might miss the pipe (and internal geology) boundaries, as shown 
in Figure 5. A random process generates subsets of the boreholes.  

For the second mine (on the right) inclined boreholes are drilled from a level above. The 
information provided by vertical holes has been ignored as they are essentially useless in providing any 
data on the boundaries between the different rock types. 
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Figure 5. Boreholes layouts for estimating the rock volumes. 

 
Kriging tends to over-smooth the actual variability, so it is expected that the kriged outlines of the 

pipe should look much more regular than the simulated (real) ones. The best interpolation between the 
data is to draw an arc of a circle for joining two data points as it is illustrated in figure 6. By adding more 
information the actual boundaries are better approximated and the smoothing effect of kriging decreases. 

 
Figure 6. Comparison of simulated pipe and the kriged outlines 

 
An attempt was made to maximize the information from the boreholes by using indirect 

information as to whether or not the informed blocks are inside or outside the pipe. This information can 
be used in the kriging system by replacing the radius value by a minimum or a maximum bound. This 
particular type of kriging mixing hard and soft data is known as kriging with inequalities. The results 
were unconvincing as no improvement was noted until quite large numbers of hard data are available. 
Unless the sample density reaches a certain level the introduction of these inequalities actually appeared 
to introduce additional uncertainty. The standard kriging technique was therefore retained. 

 
Analysis of the results 

 
As this is still a work in progress, all results are very preliminary and subject to re-interpretation. In 

particular the following results are based on ten simulations of the pipe, but it appears that it already 
provides reliable information on the relationship between the number of boreholes and the uncertainty in 
the estimation of volumes. Only results on the total pipe volume for the first mine where the boreholes are 
drilled horizontally are shown hereafter, but the same analysis can be done on the volumes for each rock 
type. Initial analysis of the data was to compare the volumes per level (roughly corresponding to the 
annual production) from the simulations to the volume per level based on the estimates. This is shown 
below in figure 7. The average volumes from the 10 simulations are plotted for 4 different sampling 
scenarios, reducing the number of holes from 104 to 42 holes, and for the original simulations. 
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Figure 7 Volume (m3) vs. level (bottom level is #1)  
 
It can be seen how the how the departure of the estimated figures from the simulation tends to increase 
when reducing the number of holes. The error and the absolute error (difference between the estimate and 
the simulation were calculated and the histogram of the absolute error is given in Figure 8 for the 
scenarios with 104, 78 and 52 boreholes. The distribution of errors is clearly more spread out for a lower 
number of boreholes. 
 

Figure 8. Distribution of the absolute errors per level per estimate. 
 

One difficulty in the analysis arises from the fact that the support of the estimation is changing 
with the level (the pipe dimensions decrease with depth). Working in relative values does not solve the 
problem, so it is important to compare the different sampling scenarios level by level. From the 
distribution of the error two statistical representations were retained, which whilst being synthetic, allow a 
more detailed analysis. The most powerfull statistics consist of the average of the error (on 10 
simulations), called MBE (Mean Biased Error) and of the average of the absolute error, called MAE 
(Mean Absolute Error). MBE evaluates the bias of the estimation while MAE evaluates the spread of the 
error. MAE has been preferred to the standard deviation of the error because it is less sensitive to outliers. 

In  figure 9, representing the MBE, it can be observed that irrespective  of the number of boreholes 
a residual bias remains. This is probably a function of the fixed borehole layout which may miss some 
feature of the geometry whatever the simulation. This would explain the occasionsal instances where the 
estimate improves  with fewer boreholes. by chance. 

Figure 10 represents the MAE. Two conclusions can be drawn. Firstly the error shows a clear 
tendency to decrease with the number of boreholes and secondly, the variability of the error from one 
level to another one is  directly linked to the number of boreholes. With the maximum number of 
boreholes the estimates of the volumes are of approximately the same quality for all levels 
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Figure 9. The mean biased error per level 

 
Figure 10. Mean absolute error per level. 

Having checked the detailed results level by level, the mean absolute error for all levels combined 
can be considered as a function of the number of boreholes (see figure 11). Therefore, each point on the 
graph is an average of 210 (21 levels by 10 simulations) values of errors. Although these statistics mix 
different support, the result is rather spectacular, showing that the uncertainty on the volumes drops 
drastically when the number of boreholes increases from about 50 to 80.  It is argued that the increase in 
error with 104 boreholes can be attributed to statistical fluctuations. It proves nevertheless the existence 
of a critical number of boreholes that is lower than the maximum that was envisaged in this study. To get 
a more precise determination of the “optimal” sampling layout would require the examination of more 
scenarios and probably also more simulations. 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 11. Global mean absolute error of the volumes per level. 
 

From this point it is possible to extend the scope of the analysis by looking at the relationship between the 
number of boreholes (and the cost per meter drilled ) and the level of acceptable risk. This can be 
achieved by using simple models based on the assumption of a gaussian distribution of errors that should 
make it possible to relate the standard deviation of the error (or its substitute MAE) to a probability and a 
confidence interval. 
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CONCLUSIONS 
 

This paper has demonstrated the practical application of geostatistical non-conditional simulations 
for making decisions on the optimal sampling strategy of kimberlite pipes. It is expected that the 
uncertainty in estimating the resources decreases when adding more  data. With this geostatistical 
approach an important step is made towards quantifying the relationship. By choosing a given level of 
risk (or confidence) the decision on the borehole layout is no longer arbitrary. In addition, the simulations 
provide visual support to the mining engineers when considering technical problems.  

Whilst the method is not universally applicable, the approach was successfully applied to two 
mines within the De Beers group. This has been achieved by making minor changes to the methodology 
to accommodate the different geological  morphologies.  To be applicable, it must be possible to represent 
the boundaries of the pipe and internal geology by a radius from a center, with a unique value for each 
direction of the space. The main obstacle arises from the “circular” nature of that variable. This original 
solution has been fully implemented using a batch procedure based on ISATIS software.  

In conclusion, an effective analysis and decision tool has been developed with wide applications. 
Its use is dependant upon  
• Defining the base models and designing various sampling campaigns, 
• Investigation of alternative solutions to the parameters of the model 
• Provision of an effective framework for the organizing and structuring of the results as the procedure 

can be run many times, generating huge volumes of information.  
Whilst all current work has been focused on modeling an area where no data are available, extensions 

to the system are envisaged to incorporate information from boreholes as they are being drilled to 
condition the simulations. This would be a powerful tool to optimize sampling.  
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