DOCUMENTATION OF THE MIXED
SUPPORT KRIGING PROGRAMIS :

Christian Lajaunie

October 25, 1996

Introduction

These programs are designed to deal with data at a limited number of different supports.
They are not appropriate if the support of the data are all different one from another.
Only one block support will be considered.

It is assumed also that the structural analvsis of the data at various supports had
been conducted. and thart a point variogram model is known.

This document begins by outlining the methodological options retained when writ-
ing the software. Then a brief description of the main programs follows. and an example
of application is given. The text ends with an appendix giving some information on
how to define a nugget effect at the point support. which is always a source of confusion.

1 Methodological options.

There is in principle no problem to deal with data on different supports in a linear
kriging. The kriging system requires only the calculation of the sample-sample grade
covariances :

Cov{Z(x;), Z(r;)} = ?(L‘i.l',-) = lei./ / Clx - y) dady
ity Ju,

and of the sample-block covariances. The drawback is that these calculations require
tedious numerical integration. For that reason random kriging had been preferred to
classical kriging. This model start with the specification of a block grid. This grid is
defined by its origin, the block size and the number of blocks along each axis. Fach
sample is locafed in one of these blocks. The model. which is quite similarly to the
discretized models used in disjunctive kriging, assumes that the positions of the samples
are random uniform and independent within the block in which they are located. This
considerably simplifies the covariance calculations. For instance if v; and r; are two
randomized samples within the blocks V" and V" :

. e 11 ,
Cov{Z(v), Z(x;)} = C(V.V") = —l—f_’,/‘ /‘.'C(r—y) drdy

This formula remains valid if 1" = V" and i # j. Note that the sample volumes || and
|z;] need not be equal. In the case i = j we have :

Var{Z(x;,)} = o,} = ﬁ// C(x - y) dedy
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We see that only the block covariances and the sample variances are needed. These can
be calculated on the block grid up to the maximum distance involved in the kriging
neighborhood before the kriging step. The price for this simplification is a very slight
loss of optimality.

1.1 The mixed support random kriging equations, and the krigi
variance.

To write up the equations of the random mixed support kriging. it is convenient to
introduce some notation.

o The block to be kriged will be referred to as V", while the blocks from the grid
containing data which are located inside the kriging neighborhood will be called
Vi-k=1..,N. Very often in practice 1" is in fact one of the 1%. But the notation
which makes the distinction according to the role of V. namely as block to be
estimated or as block containing data. will be used. since no confusion can result
from this.

o The different sample volumes will be »,.i = 1....m. Each of them has a variance
0. = \eu{Z(t }}. For the block 15%. the numbel of samples with this support
\nll be nj. > 0.

o The samples within ;. of support r; will be denoted by Zir i o= 1....0%. All
of them will receive the weight A}. so that the block estimator is:

- A S e
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Then for each block V. and for each sample support such that ni > 0 rhere is a kriging
equation. We have to make the distinction between the following cases :

1. Two different blocks (the covariance is then C(Ve. Vi)

2. Twosamples with different support within ¥} (the covariance is the block variance
9
o).

3. Two different samples with the same support within 1} (the covariance is then
again o).
4. The diagonal term, o?.
Grouping the equal weights gives the following kriging equation :
(o} +ni(nl — 1)o?) AL + > ninj ol +
P
ZannL.C(IL Vo) AL+ n p = n} C(1..1)

T

It would be unwise to simplify this equation by dividing by n} since this would destrov
the symmetry of the kriging matrix. The universality condition is :

oS TRl N =1
Ko

M&b



and the kriging variance is given by :

Var{Zy ~ Z;} = o} — Y (C(Vi.V) = p) np A}
k.

2 The programs.

‘The programs and the data files have structures very similar to the ones in the discrete
disjunctive programs. But because there are some incompatibilities in the formats, the
set of programs for mixed support kriging has to be considered as independent.

The kriging is in done in three steps. The first one is the preparation of the data.
and the setup of the block structure. The second one is the covariance calculation. The
third one is the kriging itself.

2.1 Preparing the data files.

First the data must be loaded into unformatted files. One file is necessary for each
data support. Two methods can ensure the necessary conversion:

1. The general method is to code a call to the subroutine wrdata() (one call per
support). This subroutine opens a new file and store the information. The
arguments are as follows:

wrdata(grades,coordinates,nd, idim)

grades is a float array containing the grades. coordinates is a float array ar-

ranged In the 3D case as (1. Y1 21 ...r Tng. Ynd- Sna))- nd is the number of data,
3 d- Y

and idim is the geometric dimension (1. 2 or 3).

2. The program form_data.f can do the job when the following restrictions apply:

¢ The data at different supports must be stored in separate formated file. This
file must contain a data at a line. each line containing the coordinates first
and the data after.

o The coordinates must be coded in the input file as reals.
e The data are supposed to be numbers. Hence they must be coded a@
N———

format.

e These numbers are converted to grades before storage. The user must pro-
vide the sample volume to allow this conversion.

S

See the case study for a sample run of this program. This program is to be called
for each data support.

Then the data must be arranged into a block grid. As in the disjunctive kriging
programs, the blocks are grouped into rectangular panels. and the kriging neighbor-
hoods are defined in terms of panels. This means that all the blocks within a given
panel will have the same kriging neighborhood.

For example in the 2-D case, if the panel consits of 2 x 4 blocks. and if the kriging
neighborhood is made of 5 x 3 panels. the size of the neighborhood in terms of blocks

Cownrtn
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Figure 1: Convention to define the geometric anisofropies tmn 2D. The ellipsoid displays the
curve h =1 on the Euclidean plane. It mntersccts the U and V' aris at u = 1/Gy and v = 1/C,
respectively.

is 10 x 12. Thus the maximum distance for which the block covariances have to be
calculated is h = (9r,.11 Ty) where 7..7, is the block size.

The program init_f_2D which is similar to file.init_2D for the disjunctive kriging.
ensures the setup of the block, of the panel and of the neighborhood structure in the
2-D case. The 3-D case is handled similarly by the program init_f_3D. All the sample
data at whatever support will be stored in the block file at this stage.

The block grid must also be parallel to the coordinate axis. If a different orientation
is needed. it is necessary to change the coordinate system first.

2.2 Covariance calculation.

The block covariances at the distances involved in the kriging neighborhood have to be
calculated. The variances at all the sample supports present in the data also have to
be known and are calculated by the program. All this calculation is done starting from
the point grade variogram. The point variogram model is defined interactively by the
user. Three questions relative to the definition of the point variogram model deserve
comments. These are :

The nugget effects. They result from a Dirac component on the point structure.
The rule for defining the mass associated with this Dirac component is as follows.
If the observed variogram at support ¢ has a nugget effect o2, then the Dirac

mass at point support is o7 X |v|. Details on this are giten in the appendix of
this text.

The anisotropies. Each basic variogram component is allowed to have its own geo-
metric anisotropy. The anisotropy for a basic structure is defined in 2D by an
angle and two coefficients. The angle @ is the rotation to go from the or axis
to the leading anisotropy direction {” (trigonometric convention). This rotation
defines a new coordinate system. with axis {” and V. The two anizotropy coeffi-
cients G, and G, are range reduction coefficients. If two points are at distance



(dz.dy) on the original coordinate system. the covariance between these two for
a structure of covariance C' with range a and sill 6 can be obtained by:

o Rotation to get the distance vector in the U,V coordinates :

u = cos(f)dx + sin(8)dy
» = —sin(8)dr + cos(8)dy

o (alculation of the effective distance :

ho= JwGa) + (2 Go?

e Covariance evaluation :

Cov = o C'(h/a)
The 3-D case is explained in the appendix C.

The point variogram shonld be a grade variogram. even in the case where the data
stored in the block file are numbers of particles (number of particles are not
meaningful at point support).

The program covar does this calculation.

2.3 Kriging.

The kriging program is krbmxs. It performs the estimation on each block of the grid
(provided that the neighborhood contains at least one data). The output are stored
on a file named krig.res which contains the three block coordinates. the estimated
grade or the estimated number of particles. and the associated estimation variances.

All the calculations are done internally in terms of grades. The conversion back
to the number of particles is done in the very end if required. In case of numerical
problems during the calculation. an error message is given. and a file is generated
which contains the kriging system. and the kriging weights. Its name is trace.

3 Case study.

The example to illustrate the use of the programs is in 3-D. It assumes that two sample
sizes exist. one with a support 0.9 x 0.9 x 0.9 m®, the other with a support 3 x 3x3 m?
The block size will be assumed to be 10 x 10 x 10 m3, and the panels 20 x 20 x 10 m?.
The whole field will be made of 2 X 2 x 2 panels. 1his geometry and the sample data
are shown in figure 2.

3.1 Preparing the data structure.

The sample data are in two separate file, DATA1.ECH for the support (0.9)* m® and
DATA2.ECH. for the support (3)> m®. The program form data ensures the conversion
to the appropriate data structure. The sample run shown under is relative to the
smaller support.
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Formated data file ? >DATA1.ECH
Geometric dimension ?

Input format (3(Real), Integer) ?
>(£7.2,1x,£7.2,1x,£7.2,i4)

Data support (for conversion to grades) ?
Name of the output file ?

(7

The new data files are now datal and data2. Then the panel. block, and neigh-
borhood files are prepared by the program init_f.3D, as the following sample run
shows :

DEFINING THE BLOCK SIZE :

Along x ? >10.

along y ? >10.

and along z ? >10.
DEFINING THE FIELD

Origin along x (= x min)? >0.
And maximum along x ? >40.

Origin along y ? >0.
And maximum along y ? >40.

Origin along z ? >0.
And maximum along z ? >20.
Number of blocks along x : 4 along y : 4 and along z : 2
Number of blocks in a panel along x 7 >2

along y ° >2

and along z ? >1
Number of panels along x : 2 along y : 2 and along z : 2

ACQUIRING DATA

Number of supports to be considered (max= 3) ? >2

Reading the sample data for the support 1

Input data file ? >datail
18 Valid data points read

Reading the sample data for the support 2

Input data file 7 >data2
4 Valid data points read
Number of data for support 1 : 18 Mean =0.1677E+01
Number of data for support 2 : 4 Mean =0.1556E+01
Number of informed blocks = 17
File for the block structure ? >block.dat
File to contain the panel structure ? >panel.dat

DEFINING THE NEIGHBOURHOOD SIZE (in number of panels)
Number of panels along x ?
(0dd integer leq to 7)

along y ? (max = 7)
and along z ? (max = 7)
Name of the neighbourhood file ? gigh.dat

S



Support 0.9x09x09 3x3x3 10x10x 10
Nugget 0.892 0.024 0.0006
Exponential 0.695 0.620 0.43

Table 1: Nugget effects resulting from a Dirac mass o> = 0.65 at point support. and variances
associated with the point exponential structure.

The number of data points reported after reading the file is the total number of valid
data points read. The second one given together with the mean is the number of those
points falling in the block structure. As the data are converted to grades. the means
obtained at various supports should be comparable. The neighborhood created in this
example consists of 6 x 6 x 3 blocks.

A listing of this data structure can be obtained by runing the program form_p.

3.2 Covariance calculation.
The point structure is assumed to be the sum of a Dirac component with mass ¢> =
0.65, and of the following exponential covariance :

C(h) = 0.73 exp{-—%}

The variances associated with these two model components, for the various supports
involved, are shown in table 1. The covariances are calculated by the program covar.
as shown in the following sample run :

Geometric dimension (Integer) 7 >3
DEFINITION OF THE POINT GRADE VARIOGRAM MODEL :
DIRAC component ? '
(the value of the Dirac component is the NUGGET hloLL . E%jﬁli;‘éﬂAYFOJL—
effect for a UNIT SUPPORT) (Real) >.65 —_
Number of structures 7 (Integer) >1
Definition of the structure number : 1
Type (Int - help=-1) ? >1
Sill (Real) ? >.73
Range (Real) ? >12.
Do you want to define anisotropies
(yes=1  default=0=no) ? >0
Total point variance (excluding the Dirac component) = 0.730000
Block size along the x axis ? (Real) >10.
Number of blocks in the neighborhood along
this direction ? >6
Block size along the y axis 7 (Real) >10.
Number of blocks in the neighborhood along
this direction ? >6
Block size along the z axis 7 (Real) >10.

Number of blocks in the neighborhood along

3



this direction ? >3
Number of different data supports to consider

(maximum = 3) 7 >2
Defining the sample volume for the support 1
Dimension of the sample along the x direction >.9
Dimension of the sample along the y direction >.9 :
Dimension of the sample along the z direction >.9
Volume of the sample = 0.7290
Defining the sample volume for the support 2
Dimension of the sample along the x direction >3.
Dimension of the sample along the y direction >3.
Dimension of the sample along the z direction >3.
Volume of the sample = 27.0000

Note : The number of blocks in the neighborhood is defined by the parameters of the
neighborhood. and not by the domain itself. It is the product of the number of panels
in the neighborood x the number of blocks per panel (3 x 2 in the z direction in this
case) even though due to the limited size of the domain it happens that only 4 blocks
would be sufficient.

The output of this program. to be used by the kriging program. is on file cij.dat.
The type 1 above is the exponential. and in this case the parameter range is the scale
factor 12. The maximum number of different sample sizes is fixed by a parameter
statement on the program (nsupport.max=3). Note also that the supports are defined
as rectangular (in case of a circular support. the dimension of a rectangular support
having the same volume should be given).

It is important that the order in which the different support are given match (they
must be given in the same order in init_f and in covar. thus 0.9 x 0.9 x 0.9 is relative
to datal and 3 x 3 x 3 to data2).

3.3 Kriging.
The random kriging program is krb.mxs.

DEFINING THE GEOMETRY

Panel file ? >pan.dat

Neighbourhood file ? >neigh.dat

Block file 7 >block.dat

Data = grades (default) or numbers (1) ? >1

File containing the covariances Cij 2 >cij.dat

Panel number : 1

Panel number : 2

Number of estimated blocks = 32

Conversion of results to numbers of stones ? (yes=1, def=no)
>

The results are stored on the file krig.res. If the conversion to number of stones
is required, the kriging variances are expressed in squared numbers of particles. The



output format is shown above. It contains the 3 coordinates of the block center (0 for
zin the 2D case), the estimated number of particles (or grades). the kriging variances
and the slope of the regression Z/Z":

X Y z N+ Var(N-N*) Slope(N|Nx)
5.00 5.00 5.00 1704 217853  0.8358445
15.00 5.00 5.00 1964 239557  0.8406637
5.00 15.00 5.00 2120 186459  0.9080035
15.00 15.00 5.00 2378 109118  0.9609814
25.00 5.00 5.00 1573 293264 0.7757188

Because the neighborhood is defined in init_f.3D, it is necessary to run it another time
if an increase of the neighborhood is required in order to improve the slope of the
regression.

The flow chart of the programs is shown on figure 4.

DATA1.ECH DATA2.ECH

form_data

\./
vy

datal data2

init_t_2D orinit_f_3D

block.dat pan dat neigh.dat
krig.tes

Figure 4: Flow-chart of the mired support random kriging programs for the case study. This
example contains 2 data support.

APPENDICES

A Conditional bias and the slope of the regression Z /Z*
The conditional bias to be discussed in this section is defined from the bivariate distri-
bution Z/Z" by the following formula:

bz") = E(Z|1Z"=z") - =

It is desirable to keep it as small as possible by an appropriate choice of the estimator
Z". To illustrate the point. if b(z*) = 0 at every z*, then we have:

E(Z1z.5.) = E[E[Z)Z7) 1.e5,] = E[Z" l..5.]
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which means that the actually recovered quantity of metal when the selection is done
on the basis of Z* (the left hand side term). is exactly equals to the production forecast
at the mining stage, which is calculated from Z* alone (the right hand side term).

If the bivariate distribution Z.Z" were known. it would be possible to correct the
conditional bias, or to calculate directly the recovered quantity of metal E[Z1z.5.].
But in general in the context of linear geostatistics this distribution is unkmown. and we
only know the covariances. Thus we shall limit the discussion to the linear regression.
and shall obtain necessary but not sufficient conditions for conditional unbiasedness.
This linear regression is defined by:

Z" = mil-—a) + aZ° + R

where Z7 is the linear estimate of Z from Z*. the coefficient  is Cov(Z.Z")/Var(Z").
the mean m = E[Z], and R is the residual. If the slope of this regression o is close to
one, then the conditional bias will be small. at least as long as the bivariate distribution
Z.Z" is not too far from a normal one.
If the grade estimator is linear. Z* = 2_AZ; then as long as the kriging weigths
are not all zeros !:
Z I\IC'“')

2 A Cj
We observe first that if the mean m were known. then the simple kriging could be
used. for which 2 AiCij = Cip. and o = 1. Thus. the problem comes from the need to
estimate the mean. The estimation of the mean by kriging is steadily improving if we
consider larger and larger kriging neighborhoods (under mild assumptions m* — m).
so that we can expect to improve the a parameter of the grade ordinary kriging by
increasing the size of the neighborhood. This slope can be calculated from the formula 2:
1
1= u/(3 Cii)

If the value obtained is too small. a can be made closer to one by increasing the kriging
neighborhood. This is shown for the case study presented in this document on Figure 3.
where the slopes obtained for each block under a I x 1 panel neighborhood and under
a 3 X 3 one.

B The nugget effect.

It was assumed in this document that a point variogram model is known. from the
analysis of the sample variograms at different supports. The question of how to define
the nugget effect for the point support arises. We start by recalling a general variance
formula. Let ¢ and @ be two functions®, and let Z(o) and Z(v') be the following
stochastic integrals:
Z(d) Jolx)Z(z)drx
Z(v) = [y(2)Z(x)dz
'The simple kriging under a pure nugget model is excluded from this discussion
*The sign of the lagrange multiplier 4 is conventional. The formula is consistent with the kriging
system Z, Cy Ay +p =Cio.

3The validity of the formula holds under some restrictions on o and ¢*. We shall admit that it holds
for block indicators.
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Figure 5: Slopes of linear regressions for 2 neighborhood sizes.

If C is the (point stationary) covariance of Z. then the covariance of Z(o) and Z(v)

can be obtained : )
Cov{Z(0).Z(v)} =< C .0+ >

In the above formula, “+” is the convolution product. defined by :
(fro)h) = [ frergth-z)dr

¥ is defined by ¢(z) = ¥(-z). and :
(6+0)(h) = [oz) ¢(z =~ hydr.

On the other hand,
<C.f>= [cmsnyan

Combining these two, and changing the integration variables, we get the following
explicit expression :

<C,bsv>= //C’(h)gﬁ(r)p(r— h)dz dh = //C’(.r — y)éz) v(y) dedy
which is the well known formula.

The advantage of the previous formula is that it remains valid when the structure
of Z is defined by a Dirac measure of mass 8%, instead of the continuous covariance ¢’

<86,pxd> = s'“’//@(r)r;(z—h)dz §(dh) = 32/¢(r)7_-."('.r)dr

For the indicator functions of two compact sets A and B :

o(z) = ﬁ 14(z) and P(z) = % 1g(z)

12
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Figure 6: First and second rotations.

we have:
. |4 N B

. 1 —_—1
Cov{Z(4),Z(B)} = S'W/l:‘(f)lli(-v)dl' =3 1413

To obtain the block variance Var(Z(17)), we consider the case A = B = }":
2

SV

This gives us the following practical rule that we are looking for *:

and T(V.1) = 0 (ifVN1" =)

2
Ty

/

The Dirac point covariance with mass s gives at the support 1" a
nugget effect with variance

2

S
IV

/

Conversely, if the covariance at support V" has a nugget component of variance .

the Dirac mass of the covariance model at point support is s? = 62 x |V|.

C Anizotropies in 3-D

The anizotropies can be defined by specifying three rotations, and three coeff
The rotations are the following:

e Rotation R;, with center o, axis oz, and angle a with trigonometric convention.

This changes the axis oz, 0y, 0z to oz’, 0y, 02’ (Figure 6
g ’ Y g

* Rotation R, with axis oy’, and angle B (positive downwards). This changes

oz’,0y’, 02’ to oz",0y", 0z".

* Rotation R; with axis oz”, and angle v with trigonometric convention. From this

" " 1t . —
oz",0y",0z" become oz ,0y ,0:z (Figure 7)

*This statement obviously ignores the behaviour at small distances k such that V' NV}, # 9

13
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Figure 8: Definition of the leading and second anizotropy directions.

The composition of these rotations change the coordinates (dx.dy.dz) — (u.v.wj.and

the distance to be used in the variogram is:

h = \/( uGy)? 4 (vGy )2 + (G )?

C.1 definition in terms of anisotropy ellipsoid

It is intuitively easier to think in terms of leading anisotropy directions. Each of these
can be defined either in terms of a unit vector, or in terms of angles. The definition in

terms of angles is as follows:

First axis. This direction is defined first by the angle between its projection on the
horizontal plane, and the ox axis (trigonmetric convention). This is the angle
a. Then, the second angle J is between the axis and the horizontal plane. with

positive convention downwards (figure 8).

Second axis Itis in the plane orthogonal to the first one, and is defined by its angle in
that plane with the horizontal line (5 is this angle, counted positively upwards).

The third axis is orthogonal to the first two and need not be specified. The tree angles
mentioned here are the same as the rotation angles of the previous paragraph.
As an example. suppose that a spherical structure had been identified. with:

e Range 20 in the direction East-North-East with 10 deg plunge.
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e Range 10 in the orthognal direction with a rotation +5 deg (approximately ori-
entation North-West-North, 5 deg upwards.)

e Range 5 in the third direction.
Then we can specify a spherical structure with range 20. and anizotropies given by

a=30,3=10,7 =5 and (G,.G,.G,) = (1,2.4).

C.2 Calculation of change of coordinates.

This section is intended to help in the programming of anizotropies. but is not necessary
to use the programs. We begin with a few linear algebra.

Let T be a linear mapping in IR". If an orthonormal basis e,....¢, is specified. a
matrix representation of T is defined by assigning to each column the coefficients of
the transform of the basis:

A = (T(e)).T(ea). ... T(€n))

or in other words, T(¢;) = 2 jajiej. Now if M is a point and OM the vector with
origin O and extreminy .\/. Let the coefficients of O in ¢.....€, be xy....r,. so that

oM = Z.l‘i €;
and (y;.... y») be the components of T(O M ):

T(OM) = Zy,— €;

then

T(O.‘[) = Z.l‘,- T(Ei) = Zl, Qj; €;
t iy
and we identify (the decomposition being unique) y; = a,;2,. In matrix form:
Y = AX

In other words, the previously defined matrix of T account of the coordinates of the
transform of any vector. From this. it is obvious that if T, and T, are two linear
mappings of IR" with matrices 4, and A, (expressed in the same basis) the mapping
T> 0 T} has a matrix given by the product A, A;.

Now, if T is such that the scalar product is conserved:

Y(OM.0A). <T(OM), T(OM')> =< 0M.OM' >

or in matrix form:
Y(X. X)), XA"AY = Y'Y

If we apply this to the elements of the basis X = ¢;,, X" = ¢, we see that:

Atd =1

15



so that clearly A~! = A’. This is the case if A represents a rotation. The image of
the orthonormal basis e;;i = 1,...n by T is another orthonormal basis of IR". Let
(fis -+ fn) be this new basis:

(fi- oo 1) = (T(e1), ... T(en))

Let OM =}, x;e;. It is usefull to have a formula to calculate the coefficients of O/
in the new basis.

oM = Zlf fi
The calculation is straighforward:
Z.ri fi = Z.riT(e,-) = Z.r;aj,-ej
i i )
And we identify:

AX' = X = X = 41X

Thus the coordinates of a given point in the new system are obtained by applying the
inverse of the transformation matrix. In case of a rotation. X’ = 4'X.

Now let R be the matrix of a rotation which change of coordinate system (¢;....€,) —
(fi...- fa)) and let T be linear mapping with matrix 4’ in the system {f;}. We want
to calculate the matrix of T in the svstem ¢;. For any vector OM we have:

OM=3 wfi=) ze TOM) =) t.fi=) ye
We know that V" = A'l’. But ' = R*X and V" = R'Y and:
Y = RAR'X

hence the matrix of T in the system {¢;} is A = RA'R".

C.3 Application to anizotropies
We compose three elementary rotations:

First rotation: Rotation in the plane zoy, which move the axis to 2’y’z’. The matrix
of this transform is:

cos(a) —sin(a} 0

R, = sin(a) cos(a) O
0 0 1

Second rotation: Rotation in the plane z'0z’. which move the axis to 2”y”z”. The

[

matrix of this transform in the coordinate system of x'y'z" is:

cos(3) 0 sin(.3)
R'_) = 0 1 0
—sin(3) 0 cos(.3)

Hence its matrix in the original coordinate system is R; R, R!. and the composi-
tion of the first two rotations is represented in this system by the matrix:

(Rl R_}R;)R'_ = Rl R'_l-
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Third rotation: Rotation in the plane y”oz”, which move the axis to "'y z”. The
matrix of this transform (in the system of 2”y"z") is:

1 0 0
R; = 0 cos(y) - sin(y)
0 sin(g) cos(v)

In the original system the associate matrix is:

(R1 R2) Rs (R R»)!

The matrix of the composition of the three rotations R, R. Rj is after calculation:
cos(a)cos(3) —sin(a)cos(s)+ cos{a)sin(3)sin(y) sin(a)sin(y) + cos(a)sin(3) cos(+)
sin(a)cos(3) cos(a)cos(y) + sin(a)sin(.3)sin(y) — cos(a)sin(v) 4+ sin(a)sin(3)cos(5)

—sin(a) cos(.3)sin() cos(3) cos(y)
and if a vector has coordinates in the first system h, its coordinates in the system given
by the anizotropies is A’ = R h.
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Mixed Support Kriging

What follows is an explanation of Lajaunie (1, §1.1). As in that article, we assume
that the block to be kriged is denoted by V and the blocks within the kriging
neighbourhood are Vi, k =1,...,N. Samples within V; of the same support v;
will be written as Z(vg;),a =1,...,ni.

In order to determine the mixed support random kriging equations, we first need
to determine the variance, o2, of the error of estimation

€= Z;/_ ZV,
where
n}
Zy=3 3 M Z(egy). (1)
k i a=1

In the kriging estimator of (1), samples of the same support within a given block
are assigned the same weight. In addition, the kriging weights, {AL}, are taken
o satisfy the universality condition,
DY niai=1. (2)
ki

Now \

ot = V(Z -2 /
= V[ZZALZZ(@,,-)‘—'ZZn;;Ai:ZV (3)
kd a . LA

k

-

where (3) is obtained using (1) and (2).

Next, from (3), we have

? = V[ETAT wr -2
ki a
= YYTTANTS cor 2(58,) - 2, 2(vg ) - Z]
k

ik a=1 q’=1

Note that
cov [ Z(g,) - Zu, Z(vgl ) - 2]
= V(Zv)+cov[Z (ve:), Z (v@lﬂ-')] —cov[Z (vki)s Zv] — cov[Z (v{.’,',,-,), Zv]. (4)
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MIXED SUPPORT KRIGING 2

Hence we can write
03=SI+S2—S3—S4, (5)

where the {S;} are defined below.

52 SETTRLS S v
I A A a=1o'=1
_ (Zznm) (zznzx;) )
ki K
S = 0'%;, (6)

where the last line is a result of (2).

The second component of o2 is

S, & Z Z Z Z o Z Z cov([Z(vg;), Z(Ug',,i')]

I 1/ a=1 Q'=l

= LY Mdeor{Z(8,), 268,

k=k' i=i a=a'

+ Z Z Z ’\1 'COV[Z(UL z) Z(vk' Ky )]

k=k' i=i' o' Fa

+ZZZ/\' ¥ cov[Z( Vgi)s Z(vk, )]

k=k' i'#i a0’

+>°5 > Ncov[Z(vg,), Z(vE )]

K'#k id o’

52 = ZZTI/L /\1
+Zannk 1) /\‘)
+ZannL/\' tol

ki

+ Z Z nknu/\k C(Vi, Vo). (7)

k'#k i
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The third component from (5) is

ni, ﬂi’/
Sy & ZZZZA‘ ZZCOV[Z(U,‘;,-),ZV]
it K a=1 a'=1
= > ) ni <ZZn}:,/\i.',) C(Vi,V)
k1 Koo
S3 = » > niMC(Vi, V), (8)
k i

where (2) is again used in obtaining the last line.
Finally, we have
Sy & ZZZZA} ZZCO\[ka, Zy]
EoioK @ a=1a'=1
Sy = Ss. (9)
A combination of (4), (5) and (6)—(9) yields

o2 = o2+ ZZ[nko +ni(ni — 1)o?] (AL)?
+ Z Z nknk UVA;:Ak + Z Z nin};ﬁ("l, ‘/')/\1 i.,l

kil Kk 48
=23 > nl(Vi, VX (10)
ki
as the variance of the estimation error.

The kriging equations are derived by minimising f(, u) = 02—2u (1 = ki n;/\}c)
w.r.t. the {)\}} and the Lagrangian multiplier, p. Since

SIME) . ofndo? 4 mind — 1)o2N +23 " mind o2
6/\1 J'#i
+2) > " ninlC(V;, V)X, = 20TV, V) + 2uni N,

1.I¢r jl
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MIXED SUPPORT KRIGING 4

the mixed support random kriging equations are

[nio? +ni(nf, — 1)oP)A + > ninfo
i

+y Z b C(Vi, Vi) Al + nip = niC(Vi,V), Vki (11)

Kk 7
> > e = 1
ko

If we multiply (11) through by A% and then sum the resulting equations over k
and i, it emerges from (10) that the kriging variance, o?;¢, is

Ohsk = 0o+ anc (Vi, VIAL — #an,\' —2ZanC (Vi V)AL
= op- Z[C(t V) + ulni XL
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