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A B S T R A C T

The presented study investigates the prediction of buried paleo-channels for probabilistic ground modeling of offshore windfarm development areas using geo
statistical methods. These channels, common in glaciogenic regions like the North Sea, can pose significant geohazards affecting turbine foundation stability. 
Conventional 2D seismic data interpretation provides the best estimate of the position but lacks probabilistic assessment, specifically at unexplored locations. 
Multiple-point statistics (MPS) and sequential indicator simulation (SIS) are applied to quantify the probability of channel features from seismic data, away from 
seismic lines. MPS utilizes training images to capture complex spatial structures, while SIS relies on variogram models for modeling spatial variability. Results 
demonstrate that denser seismic line spacing (150 m) yields higher accuracy compared to wider spacings (300 m and 600 m), underscoring the importance of data 
density in offshore subsurface site characterization. Additionally, the findings indicate that MPS provides lower errors, making it preferable for precise channel 
location prediction. The selected training image did not have a major impact on the outcome on the tested data. Conversely, SIS offers broader coverage of potential 
channel locations, which may be advantageous for further de-risking. This research contributes to more informed ground modeling by incorporating probabilistic 
approaches. Therefore, it supports in offshore wind farm site development by enhancing knowledge of the subsurface at an early stage of wind farm development to 
aid decisions in windfarm and further site investigation planning.

1. Introduction

In the planning of offshore wind farms and their turbine layout, 
ground modeling plays a crucial role as part of the subsurface site 
characterization of potential development areas. In addition to other 
important factors, such as wind resources and the restriction due to 
infrastructure or planning of adjacent areas, ground models contribute 
to determining the location of wind turbines, as well as their foundation 
type and depth. Despite its significance, probabilities in ground 
modeling are often not fully addressed. Probabilistic evaluation is 
essential for risk assessment and mitigation in the later installation 
process, ensuring long-term stability of offshore infrastructure.

Geospatial variability, both lateral and vertical, is a major geo- 
engineering constraint for offshore wind development, and accurately 
capturing this variability is essential. Among various geological features, 
buried channels are especially of interest because they can pose geo
hazards due to their often heterogeneous architecture (Coughlan et al., 
2018; Velenturf et al., 2021). In the North Sea, such features are 
frequently encountered in areas influenced by glaciogenic processes, 
resulting in complex sedimentary structures due to repeated trans
gression and regression events, as well as dynamics of ice sheets over 

time (Schwarzer et al., 2008; Moreau et al., 2012). Identifying and 
accurately locating these geohazards is important, as they can adversely 
affect the stability and safety of wind turbine foundations since they are 
typically encountered within the installation depth of pile foundations 
(Coughlan et al., 2018; Petrie et al., 2022).

Offshore wind farm ground modeling commonly relies on 2D seismic 
data acquisition and interpretation to characterize the development 
area. Acquired 2D seismic lines typically follow a regular cartesian grid, 
but the inter-line spacing can differ based on requirements imposed by 
development stage, regulatory bodies or involved companies. Geological 
horizons are identified along the 2D seismic lines and interpolated onto 
a three-dimensional grid. However, conventional interpolation tech
niques only operate locally and remain agnostic of dataset-spanning 
correlations. In addition, these methods typically lack the possibility 
to estimate prediction uncertainties which are of particular importance 
for larger line separations. To effectively mitigate risks associated with 
channel features, it is necessary to properly quantify the likelihood to 
encounter those features away from measured locations.

The aim of this study is to quantify and evaluate the probabilities of 
channel features derived from the interpretation of seismic data in 
offshore wind farm developments by applying geostatistical techniques. 
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The focus is on 2D data, as it is currently the most common method of 
seismic data acquisition in offshore wind, although the authors 
acknowledge the increasing relevance of 3D data acquisition (Caselitz 
et al., 2025), where this type of challenge does not apply due to their 
area-wide coverage.

Conventional geostatistical interpolation techniques, such as Krig
ing, are primarily designed to provide the best linear unbiased estimates 
of spatial variables. However, they generally focus on deterministic 
predictions and do not explicitly quantify uncertainty or provide prob
abilistic assessments of spatial variability. This study, therefore, focuses 
on geostatistical simulation, which generates multiple realizations used 
to quantify the probability of specific geological features. Several 
methods exist for the simulation of categorical variables (Chiles and 
Delfiner, 2012), which are applied to predict facies or geological units. 
This research considers multiple-point statistics (MPS) and sequential 
indicator simulation (SIS). A comparative analysis of the application of 
both methods is available in the literature, illustrating different fields of 
application (Bastante et al., 2008; De Iaco and Maggio, 2011; Zhou et al., 
2018). MPS employs training images (TIs) to capture complex spatial 
relationships and patterns found in geological structures. By generating 
multiple realizations based on these TIs, MPS allows us to derive prob
abilities of geological features, providing insights into where 
paleo-channels are likely to exist beyond the constraints of directly 
measured seismic lines. This approach enables to quantify uncertainty 
by comparing different realizations and assessing the variability in 
predictions. SIS, on the other hand, utilizes variogram models to simu
late spatially correlated categorical variables. It generates multiple re
alizations that maintain the spatial dependencies observed in the 
conditional data (CD) obtained from seismic lines. Each realization 
represents a possible distribution of channel features, allowing us to 
assess uncertainty in predictions by analyzing the range of outcomes 
across simulations.

This study evaluates the applicability of MPS and SIS on offshore 
windfarm data to assess channel probability away from measured 2D 
seismic lines, considering variations in line spacing and different 
training images from diverse geographical areas.

2. Methodology

2.1. Multiple-point statistics by direct sampling

Modeling spatial heterogeneity is a fundamental challenge in geo
statistics. Traditional geostatistical methods, such as variogram-based 
kriging techniques, often fail to capture the complexity of geological 

structures due to their reliance on two-point statistics (Strebelle, 2002). 
In contrast, MPS methods offer a more robust alternative by using 
training images (TIs) to reproduce complex spatial patterns (Mariethoz 
and Caers, 2014; Meerschman et al., 2013). In MPS statistical relation
ships from TIs are extracted, which serve as a reference for the expected 
spatial structures of the target domain. These approaches enable the 
generation of stochastic realizations that honor both the spatial con
nectivity observed in the training images and any available conditioning 
data (Straubhaar et al., 2016).

In this study the DeeSse algorithm as implemented in the Software 
Isatis.neo™ (Geovariances et al., 2024) was used. It is based on the 
direct sampling (DS) method, originally proposed by Marietholz et al. 
(Mariethoz et al., 2010). It differs from other MPS approaches by 
avoiding the pre-computation of pattern databases. Instead of storing all 
data events from the TI, DS directly scans the TI during the simulation 
process. DS is applicable to both categorical and continuous variables, as 
well as to multivariate simulations (Mariethoz et al., 2010).

In the DS framework, a simulation grid is populated sequentially by 
assigning values based on similarity measures between the local data 
and patterns within the TI (Fig. 1). The similarity is determined using a 
distance function, typically defined as the proportion of mismatching 
nodes for categorical data or the mean absolute error for continuous data 
(Straubhaar et al., 2020). Besides the TIs and the conditional data (CD) 
itself, key parameters controlling DS include the number of nearest 
neighbors (N), the distance threshold (t) for pattern matching, and the 
scan fraction (f) of the TI to be scanned before assigning a value 
(Meerschman et al., 2013). By calculating multiple stochastic re
alizations, probabilities can be derived from them and further used in 
risk assessment.

2.1.1. Training images and conditioning data
A TI serves as a spatial reference that captures expected patterns of 

subsurface features, providing a conceptual model that guides the MPS 
algorithms in generating plausible distributions of geological structures. 
In scenarios with limited input data, TIs help reconstruct subsurface 
structures beyond directly observed areas (Zhang et al., 2007). TIs can 
be derived from various data sources such as conceptual geological 
models, outcrop analogs, or geophysical datasets (Pyrcz et al., 2008). In 
this study, the TIs are based on conceptual images manually interpreted 
from 2D seismic data. Paleo-channel boundaries were first identified 
along seismic sections and manually digitized at the level of interpreted 
lithological horizons, considering the relative elevation, slope, and 
morphological characteristics typical of fluvial systems. These were then 
interpolated laterally between seismic lines, to generate a continuous 2D 

Fig. 1. Conceptual illustration of the general process of MPS by direct sampling using the DeeSse algorithm. (adapted after Straubhaar et al. (Straubhaar 
et al., 2020)).
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surface. Each image was constructed over a predefined 5 km × 5 km 
area. The availability of such a geologically informed 2D surface serves 
as ground truth against which the performance of the simulation 
methods can be objectively evaluated. The image is then converted into 
a grid with a resolution of 10 m, containing categorical data (channel, 
non-channel), resulting in a 500 × 500 cell matrix. This grid defines both 
the training image and the simulation grid domain. From these gridded 
images, conditional data sets were generated by extracting categorical 
values along synthetic seismic survey lines that mimic actual acquisition 
geometries. These profiles were constructed with regular spacings of 
150 m, 300 m, and 600 m, as well as in irregular configurations (see 
Supplementary Fig. S1). Fig. 2 shows an overview of the different images 
used in this study. The examples were taken from true windfarm 
development areas in the German North Sea, over Holocene and Upper 
Pleistocene deposits. However, due to confidentiality constraints and 
because the areas themselves as well as their geological background, are 
not the focus of the study, exact locations and detailed geological de
scriptions are not provided. Each image has a unique set of channel 
structures, with varying channel density, orientation and width. All 
images were selected from different locations but from the same regional 
geological context to investigate whether TI and CD sets that are distant 
from each other can still be used. These images serve as TIs and as the 
source of the conditional data for the different line spacings.

2.1.2. Direct sampling parameterization
The parameterization of MPS can be quite complex, as the outcome 

depends on several parameters. In Meerschman et al. (2013) and Juda 
et al. (2022), a description of the parameters and their effect on the 

prediction, along with suggestions for optimizing the outcomes can be 
found. After performing hyperparameter tuning through a sensitivity 
analysis of the main search pattern parameters, it was decided for this 
study to set the accepted distance threshold t to 0.02, the scanned 
fraction f to 50 percent and the number of cells for the nearest neighbor 
N to 50.

The number of realizations influences the uncertainty analysis. 
Montero et al. (2021) suggest performing at least 20 realizations, while 
Zhang et al. (2024) increased this number to 200. In this study, the 
number of realizations was determined based on a convergence criterion 
using the average absolute difference of probabilities (AADP). Stabili
zation was defined as a 95 % reduction in the slope of AADP over a 
sliding window, which results in a total amount of 200 realizations to be 
used. Full details are provided in supplementary material section S1.

2.2. Sequential indicator simulation

Sequential indicator simulation (SIS) is a geostatistical technique 
employed to model and simulate spatially correlated variables. This 
method is broadly applied in various domains, including mining, hy
drology, and environmental science, particularly for resource estimation 
and risk assessment (Zhou et al., 2018; de Souza et al., 2013; Medi
na-Ortega et al., 2019; Madani, 2022). Simulations can be conditional, 
meaning that they are constrained to known data; in this case the in
formation along the 2D seismic lines.

To model spatial categorical variables, continuous data are trans
formed into binary indicators, as in MPS. An essential aspect of SIS is the 
analysis of spatial correlation. Variograms are used to quantify the 

Fig. 2. Overview of the different images used for the creation of TIs and CD, with black highlighting channel locations. All images are based on interpretation from 
true offshore windfarm development areas and are taken from different regions, with the same overall geological context. All images cover an area of 25 km2.
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spatial structure of the indicators, providing insight into their relation
ships over distance. In SIS, multiple realizations of the indicators are 
generated sequentially, ensuring that the spatial correlation and de
pendency between indicators are preserved throughout the simulation 
process. Each simulation step depends on the outcome of the previously 
simulated data points in addition to the CD. By creating multiple re
alizations, SIS allows for assessing uncertainty in spatial data. By 
generating a range of possible scenarios for the distribution of variables, 
SIS enhances decision-making processes in resource management and 
environmental assessment ((Zhou et al., 2018) and references therein). 
More detailed information on the methodology is given by Chiles and 
Delfiner (2012).

In contrast to MPS, SIS simulates properties based on variogram 
models, making it independent of the selection of TIs. This can be ad
vantageous when the overall structure of the outcome is unknown, or 
when no suitable TI is available. For each image presented in Fig. 2, SIS 
is run for different line spacings, as described previously. As with MPS, 
the AADP has been calculated to estimate the number of necessary re
alizations for a nearly steady-state condition. The results can be seen in 
supplementary material section S1 and indicate a necessary number of 
realizations of 200.

2.2.1. Variogram models for SIS
The variogram is a key component of geostatistical analysis, serving 

as a quantitative measure of spatial continuity between data points. It 
provides insights into how variables change over space, thereby allow
ing for the modeling of spatial relationships and making predictions at 
unsampled locations (Pyrcz and Deutsch, 2014).

The variogram is typically plotted as a function of the lag distance 
(h), to characterize spatial relationships. The variogram model can be 
described by three components: the nugget effect, sill and range. The 
nugget effect represents the variogram at h = 0 and reflects the vari
ability of the data at a very small scale. It implies measurement errors or 
inherent micro-scale variability (Oliver and Webster, 2015). The sill is 
the value at which the variogram levels off, indicating that the spatial 
correlation has reached its maximum and therefore maximum vari
ability, represented by the overall variance of the dataset. The range is 
the distance at which the variogram reaches the sill, suggesting the 
maximum distance of spatial correlation. Beyond this distance, the ob
servations are considered spatially uncorrelated. A more rigorous 
description of the general concepts is provided by Chiles and Delfiner 
(2012) and Oliver and Webster (2015).

The variograms and the representative variogram model parameter 
for the different line spacings can be seen in Fig. 3 and Table 1, exem
plary for image E. While the range and sill vary depending on the line 

spacing, the nugget is set to zero for all models, assuming no variability 
at zero distance. Two structure components are needed for a suitable fit 
of the data. The variograms and model parameters for the other images 
are found in the Supplementary Material Fig. S2 and Table S1.

2.3. Assessment of output quality

To assess the quality of the output, the Mean Squared Error (MSE) is 
calculated for each set of TI and CD configurations. To facilitate a more 
direct comparison across different cases, the MSE values are normalized 
to a scale between zero and one, as described in Equation (1). This 
normalization is performed using the global minimum and maximum 
rather than those within each individual conditional dataset to allow for 
a standardized representation. 

MSEnormalized =
MSE − MSEmin

MSEmax − MSEmin
(1) 

where MSEmin and MSEmax correspond to the minimum and maximum 
MSE values observed across all scenarios.

3. Results

The simulation results of both algorithms are derived from multiple 
stochastic realizations, in which successive possible scenarios are 
generated. Fig. 4 shows the results of different randomly picked re
alizations for MPS (above) and SIS (below). This comparison highlights 
the main differences between the outputs of the two approaches and 
their visual characteristics. MPS exhibits more continuous channel 
structures with a smooth appearance, while SIS appears patchy and 
discontinuous. Although the examination of individual realizations can 
aid interpretation, for the later results, only probabilities are considered. 
Channel probabilities are derived from counting all categorical variable 
‘channel’ at each individual grid cell, divided by the total number of 
realizations.

Fig. 3. Experimental variogram (dotted red line) and fitted variogram model (solid red line) used for the SIS calculation for the different line spacings on image E. 
The horizontal black dotted line indicates the sill. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)

Table 1 
Variogram model parameters for the variograms shown in Fig. 3.

Spacing [m] Structure type Ranges [m] Sill

150 Cubic 377 0.0335
Exponential 425 0.1063

300 Cubic 388 0.0367
Exponential 409 0.1041

600 Exponential 162 0.0408
Cubic 415 0.0876
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3.1. Multiple-point statistics

According to the previously described data, a matrix of different 
configurations of TI and CD can be calculated using MPS. Both TI and CD 
originate from the exact same area, as representatively shown in Fig. 5. 
Here, the result of different line spacings on the channel probability is 
shown using TI and CD both from image E. The results closely match the 
known channel location with a high probability. The overall outcome 
becomes less certain with increasing line spacing; however, it still in
dicates that the method is working properly. The MSE increases with 
line spacing but remains generally very low, for all configurations, 
where TI and CD are from the same area.

Table 2 presents the MSE results for all possible TI and CD sets, 
showing an overview of the possible outcomes color coded from low 
(green) to high (red). When TI and CD are from the same area, the MSE is 
lowest for the given line spacing. However, the MSE is not zero, indi
cating deviations in the prediction. It is evident as expected that the 
lowest MSE occurs for the narrowest line spacing, while the wider line 
spacing leads to increasing MSE due to less certain predictions caused by 
the sparser CD.

On average, considering all findings, there is no significant difference 
in the performance of the various TIs, despite their largely diverting 

shapes and patterns. This suggests that the calculation is not very sen
sitive to the selection of the TI for this particular data set. Therefore, it 
can be attested that for MPS knowledge transfers well to unseen data
sets, which can support windfarm ground modeling in newly acquired 
areas based on prior knowledge derived from other areas.

Fig. 6 shows the channel probability estimations for image E using 
the different TIs (top to bottom) to test the various line spacings (left to 
right). Areas with high probabilities (red color) indicate that channels 
are likely to be present, whereas areas with low probabilities (purple 
color) suggest the presence of flood plains. The positions of the seismic 
lines are marked white, indicating that no channel has been interpreted 
on the 2D line, whereas black indicates a channel. For reference, the true 
channel position is marked by a dotted line in all sub-figures. The other 
TIs have also been tested for the remaining data sets, however, since 
there are no significant changes in the overall findings, the additional 
data is presented in the Supplementary Material Fig. S3–S6 and is not 
further described.

The effect of varying line spacing on the reconstruction of channel 
networks is evident in the probability maps presented in Fig. 6. An in
crease in line spacing leads to a decrease in probability matching with 
the true channel locations. At a spacing of 150 m, the conditional data 
provides sufficient constraints, allowing for a high degree of accuracy in 

Fig. 4. Random realizations (A, B, C, D …) for MPS (top) and SIS (bottom), shown progressively overlapped to illustrate how multiple stochastic scenarios are 
stacked to derive the probability map. Blue indicates individual channel realizations; red and white in the probability map indicate high and low likelihood of 
channel presence, respectively. Black and white lines correspond to channel and non-channel conditioning data, while the true channel location is marked with a 
black dashed line. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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channel reconstruction. Nevertheless, as the spacing increases to 300 m 
and 600 m, the probability of correctly identifying channels declines 
significantly, as indicated by the increasing MSE values across all 
considered TIs (Table 2).

At 150 m spacing, challenges arise when reconstructing thin channel 
structures. Even when the TI contains similarly thin channels, the 
reconstruction struggles due to a lack of sufficient matching points in the 
TI. Additionally, orientation mismatches become apparent, where the 
inferred channels deviate from their expected trajectories. This issue 
underscores the importance of incorporating orientation-sensitive 

constraints or more refined training datasets to improve accuracy in 
regions with narrow or intricate channel formations.

Channel continuity is strongly affected by the availability and den
sity of conditional data. When data points are spaced further apart, the 
inferred spatial coherence of channels weakens. This is particularly 
noticeable at 600 m spacing, where previously well-connected channel 
networks begin to fragment, and some sections incorrectly connect, or 
new artificial channels emerge. In some cases, the model introduces 
artificial stretching effects, elongating channels in directions dictated by 
the available conditioning data rather than following the true channel 

Fig. 5. Example of the channel probability result for the case when TI and CD are from the same image (compare E in Fig. 2), with increasing line spacing from left to 
right. The conditional data is defined as channel (black lines) or non-channel (white lines). The true channel location from the original data is indicated as black 
dotted lines. Red indicates high probabilities of channel locations, white indicates low probabilities of channel locations. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.)

Table 2 
Overview of the normalized MSE for the different line spacings and TIs used for the CD that entered MPS.
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Fig. 6. Summarized results of the channel probability using MPS for the different TIs (A–D), where example image E served as CD. Fig. 2 serves as a reference for the 
different TIs. The TI name is given on the left. From left to right the results of the different line spacings are given (150 m, 300 m, 600 m). The MSE as per Table 2 is 
provided in the corresponding sub-figures as a cumulative measure for prediction accuracy. Channel (black) and non-channel (white) locations are indicated along 
the seismic line positions. For comparison, the true channel location is indicated by the black dotted lines. Red indicates high probabilities of channel locations, white 
indicates low probabilities of channel locations. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)
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structure. These misinterpretations highlight the limitations of sparse 
data in reliably capturing complex geological patterns.

Across different TIs, no major visual differences in performance are 
observed on a broad scale. However, finer-scale differences exist, indi
cating that the choice of TI influences specific reconstruction details. As 
seen in Fig. 6, performance varies locally, where one TI provides better 
results in one region, and another TI may perform better in a different 
region. This suggests that while the overall performance is comparable 
among TIs, specific characteristics of each TI may introduce subtle 
variations in the inferred structures.

3.2. Sequential indicator simulation

Since SIS is not based on TIs for sequential calculation, but on var
iogram models for each conditional data case, only one possible 
outcome is expected for each CD and line spacing, reducing the overall 
possible number of results. Only one variogram model is considered for 
each scenario, although the uncertainty of the variogram model and its 
effect on the results have not been investigated. Table 3 shows the re
sults of the normalized MSE for the different line spacings and CD sets.

The overall MSE for SIS is higher compared to MPS indicating better 
numerical performance for the latter. Nevertheless, like MPS, an 
increasing MSE with increasing line spacing is observable for SIS, which 
is explained as well by the decreasing amount of CD, making the pre
diction less reliable. Particularly for 150 m line spacing, SIS has a 
significantly higher MSE than MPS. For 300 m, this discrepancy reduces 
but remains high. At 600 m, where the overall simulated results exhibit a 
less structured and more dispersed shape, the MSE shows good 
correspondence.

The difference in the MSE between SIS (Table 3) and MPS (Table 2) 
already suggests a variation in the performance of the two methods. 
Here, the TI based approach outperforms the variogram based method 
underlining the importance of selecting a suitable predictor.

Fig. 7 representatively shows the channel probabilities of the SIS 
results for the different line spacings and the example case of image E 
(Fig. 2). The general findings from the MPS results are supported by SIS. 
As the line spacing increases from 150 m to 600 m, the ability to accu
rately predict channel positions decreases, as reflected in the rising MSE 
values. The results for the other images can be found in Supplementary 
Material Fig. S7.

At a line spacing of 150 m, the probability maps indicate a high 
degree of agreement with the true channel locations. The channel 
structures are well captured, with minor deviations from the reference 
patterns. However, compared to the MPS results, the MSE at this spacing 
is higher. At 300 m spacing, a clear degradation in channel correlation is 
observed. The channels remain largely visible, but there is an increased 
presence of misclassified areas, where channel probabilities become 
more diffuse. At 600 m spacing, the connectivity of the channels breaks 
down significantly. While general channel structures remain somewhat 
discernible, there is considerable fragmentation and an increase in 
artificial channel connections. This further supports the conclusion that 
wider spacing leads to a significant loss of structural integrity in the 
inferred channels, likely due to the stretching effect and the lack of 

sufficient conditioning data to maintain accurate fit.
The direct comparison of the probability maps of MPS and SIS shows 

that the probability distribution of SIS is broader compared to MPS 
(Figs. 6 and 7, respectively). Additionally, probabilities are lower for 
SIS, while still covering the channel structures. The lower MSE for SIS 
can be explained by these observations (Table 3).

For a more detailed comparison of the different results of MPS and 
SIS and to support previous findings, Fig. 8 shows a close-up of the re
sults for two example areas. One can observe that MPS exhibits a ten
dency to thin out certain channel segments, leading to incomplete 
coverage of the true channel extent. This is particularly critical as it may 
result in areas where channels exist but are not identified in the model. 
On the other hand, SIS shows a broader probability distribution around 
the true channels, which is also reflected in its higher MSE values 
(Table 3). SIS conservative appearance might be advantageous from an 
engineering perspective, as channels tend to have a "buffer zone" around 
them. This could help to avoid overestimating the extent of non-channel 
areas. In contrast, MPS offers a more constrained and definitive channel 
prediction, leading to greater certainty in channel placement but with a 
higher risk of underestimating channel extent.

3.3. Discussion

The presented results highlight the main advantages and disadvan
tages of the different techniques to be used in paleo-channel probability 
assessment for offshore windfarm ground modeling. MPS is pattern- 
based and heavily dependent on the chosen TI as input image. Never
theless, it has been demonstrated that for this particular data set, for 
narrow line spacings MPS is not very sensitive to the selection of TI if 
plausible channel patterns are used. Known channel structures from 
adjacent windfarm areas can therefore be used, as they are based on a 
similar geological background. Nonetheless, it is necessary to under
stand the expected structures.

SIS is completely independent of TIs and only requires variograms 
for the definition of spatial distribution. This approach becomes 
particularly robust when a significant amount of conditional data is 
available which is narrowly distributed but becomes more challenging 
with increasing spacing. This is confirmed by Marietholz et al. 
(Mariethoz et al., 2010), who state that when a large amount of condi
tional data is available, it is possible to neglect a TI and rely purely on 
data driven approaches. Here, machine learning (ML) algorithms can 
also come into play, particularly convolutional neural networks (CNNs), 
which have shown potential in learning spatial patterns from labeled 
training data. In the context of 2D geostatistical simulation, CNNs could 
be trained to recognize and reproduce channel-like morphologies from 
sparse conditioning inputs, acting similarly to MPS in capturing complex 
spatial dependencies. CNNs have already been applied successfully in 
geoscientific problems such as fault detection in seismic images (Wu 
et al., 2018)). Studies by Bastante et al. (2008), De Iaco and Maggio (De 
Iaco and Maggio, 2011) and Zhou et al. (2018), have compared SIS and 
MPS, among others. While Bastante et al. (2008) and De Iaco and 
Maggio (De Iaco and Maggio, 2011) did not specially focus on channel 
prediction, they found that MPS is better in reproducing complex 

Table 3 
Overview of the normalized MSE for the different line spacings and TIs used for the CD for the SIS calculation. As before green and red colors 
indicate low and high MSE values, respectively.
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Fig. 7. Summarized results of the channel probability using SIS, tested for CD-E. From left to right the results of the different line spacings are given (150 m, 300 m, 
600 m). The MSE as per Table 3 is provided in the corresponding sub-figures for a quantitative measure. Channel (black) and non-channel (white) locations are 
indicated along the seismic line positions. For comparison, the true channel location is indicated by the black dotted lines. Red indicates high probabilities of channel 
locations, white indicates low probabilities of channel locations. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.)

Fig. 8. Close-up of two examples showing details of the probability estimation comparing MPS (left) and SIS (right) results for a line spacing of 150 m. The figure 
highlights the major differences in the appearance of the probability estimates of the two tested methods. Channel (black) and non-channel (white) locations are 
indicated along the seismic line positions. For comparison, the true channel location is indicated by the black dotted lines. Red indicates high probabilities of channel 
locations, white indicates low probabilities of channel locations. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.)
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patterns and their connectivity, which is supported by the findings of 
this study. Zhou et al. (2018) had similar findings while testing the 
methods particularly on channel features. They have also tested 
different conditional data densities based on aerial photos of a river, but 
the scale of several kilometers between the CD is not directly compa
rable to the study presented here.

Ultimately, the choice between the two methods depends on the 
acceptable level of risk for the end-user. If a conservative design 
approach is required, MPS may be preferred due to its lower overall 
error. However, if ensuring maximum channel coverage is more critical 
SIS can the better option. The close-ups in Fig. 8 further illustrate this 
trade-off, emphasizing the importance of defining an acceptable prob
ability threshold based on risk tolerance and project-specific re
quirements. Nevertheless, both techniques and their findings support in 
the assessment and development of offshore wind farm ground models 
and can assist in decision making for further site investigation cam
paigns and wind farm planning. While they are not meant to replace true 
site investigation campaigns, they can be used for more informed deci
sion making in the planning of campaigns or in windfarm layout design. 
Both methods can be potentially also applied to other types of mor
phologies like tunnel valleys or to estimate and quantify unit layer 
boundaries for probabilistic ground models. The assessment of connec
tivity of predicted channels was not the focus of the study. Nevertheless, 
it is recommended to address this in future studies. Guidelines to address 
it are found in e.g. Zhang et al. (Zhou et al., 2018).

It is not the intention of this study to provide a general recommen
dation of the line spacing necessary for achieving reliable results. The 
chosen grid depends on the specific need of the site survey and the 
subsequent ground modeling activities. Nevertheless, it is obvious that 
150 m line spacing delivered the most accurate results independent of 
the chosen method. This corresponds to the current standard for the pre- 
investigation of offshore windfarm development areas commissioned by 
the German government agency BSH. While the overall channel struc
tures remain interpretable even at 600 m spacing, the reproducibility 
diminishes visibly. The provided comparison emphasizes the impor
tance of maintaining denser conditioning data to achieve robust re
constructions. According to investigations by Lohrberg et al. (2022), a 
line spacing of less than 800 m for 2D seismic data is sufficient to assess 
buried tunnel valleys in the shallow subsurface. The findings of this 
study indicate that such spacing would be too coarse to adequately 
capture channel distribution between the lines. However, it must be 
considered that the scope of the study was different and that TVs are 
commonly wider compared to the paleo-channel structures being 
investigated here, making them likely to be less sensitive to broader line 
spacings.

In the studies of Sauvin et al. (2023) and Forsberg et al. (2022) a 3D 
UHR seismic survey was used from which artificially 2D line spacings 
with increasing line separation was introduced. The final aim of the 
studies was to investigate the uncertainties of predicted cone penetra
tion tests with increasing line spacing. Within that, the horizon depth for 
the interpreted units were interpolated between the lines of a decimated 
3D seismic survey. In contrast to this study, the focus was not specifically 
on channel structure and instead of categorical variables, continuous 
variables (horizon depth) were investigated. Still, findings indicate that 
the error of horizon interpolation increases with increasing decimation, 
which is in alignment with the findings of this study.

After all, 3D seismic surveys become increasingly relevant in site 
characterization for offshore windfarms. Here, the questions of the 
necessary density of line spacing is rather obsolete through minimizing 
knowledge gaps in site investigation data. Nevertheless, 2D data 
acquisition still plays a major role in ongoing and future windfarm 
development projects, making the question of sufficient line spacing a 
relevant and ongoing topic.

4. Conclusions

In this study, geostatistical methods, specifically multiple-point sta
tistics (MPS) and sequential indicator simulation (SIS), have been suc
cessfully applied to assess paleo-channel probabilities for geological 
ground models in offshore windfarm developments. The findings indi
cate that MPS generally outperforms SIS in terms of accuracy, particu
larly at denser line spacings. Specifically, a line spacing of 150 m yielded 
the lowest MSE across all tests, indicating a high degree of accuracy in 
channel reconstruction. In contrast, as line spacing was increased from 
300 to 600 m, the MSE values rose significantly, reflecting a decline in 
the reliability of channel predictability.

While MPS demonstrated better numerical performance, SIS pro
duced a more continuous spatial probability distribution across poten
tial channel structures, but with a higher degree of uncertainty. This 
highlights the trade-off between precision and coverage, suggesting that 
the choice of method should depend on the specific risk tolerance and 
project requirements of the end-user. Furthermore, the ability to apply 
TIs and conditional data from geographically diverse areas enhances the 
robustness of both methods, contributing to improved risk assessment in 
offshore windfarm site development.

The study emphasizes the importance of the consideration of seismic 
line spacing in ground modeling efforts, supporting denser acquisition 
strategies to ensure accurate representation of subsurface features. With 
the increasing relevance of 3D seismic data acquisition the question of 
line spacing might become less relevant in future offshore windfarm site 
characterization.

Although the findings do not replace true site investigation coverage, 
they contribute to the improvement of ground modeling techniques and 
support improved decision-making in offshore wind farm planning, ul
timately aiding in a safer and more efficient installation of turbine 
foundations.
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Zhang, C., Gravey, M., Mariéthoz, G., Irving, J., 2024. Reconstruction of high-resolution 
3D GPR data from 2D profiles: a multiple-point statistical approach. Remote Sens. 
16. https://doi.org/10.3390/rs16122084.

Zhou, F., Shields, D., Tyson, S., Esterle, J., 2018. Comparison of sequential indicator 
simulation, object modelling and multiple-point statistics in reproducing channel 
geometries and continuity in 2D with two different spaced conditional datasets. 
J. Petrol. Sci. Eng. 166, 718–730. https://doi.org/10.1016/j.petrol.2018.03.043.

L. Siemann and R. Relanez                                                                                                                                                                                                                   Applied Computing and Geosciences 27 (2025) 100280 

11 

https://doi.org/10.1016/j.enggeo.2008.01.006
https://doi.org/10.1190/tle44030170.1
https://doi.org/10.1190/tle44030170.1
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref3
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref3
https://doi.org/10.1111/bor.12253
https://doi.org/10.1111/bor.12253
https://doi.org/10.1007/s11004-011-9326-9
https://doi.org/10.1016/j.coal.2012.12.005
https://doi.org/10.1016/j.coal.2012.12.005
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref7
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref7
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref7
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref7
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref8
https://doi.org/10.1016/j.acags.2022.100091
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref10
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref10
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref10
https://doi.org/10.3390/math10244669
https://doi.org/10.1002/9781118662953
https://doi.org/10.1029/2008WR007621
https://doi.org/10.1029/2008WR007621
https://doi.org/10.1007/s10040-019-02011-1
https://doi.org/10.1007/s10040-019-02011-1
https://doi.org/10.1016/j.cageo.2012.09.019
https://doi.org/10.1016/j.cageo.2012.09.019
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref16
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref16
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref16
https://doi.org/10.1144/SP368.5
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref18
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref18
https://doi.org/10.1144/jgs2021-163
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref20
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref20
https://doi.org/10.1016/j.cageo.2007.05.015
https://doi.org/10.3997/2214-4609.202320162
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref23
http://refhub.elsevier.com/S2590-1974(25)00062-X/sref23
https://doi.org/10.1016/j.spasta.2016.02.005
https://doi.org/10.1016/j.spasta.2016.02.005
https://doi.org/10.1007/s00477-020-01770-8
https://doi.org/10.1007/s00477-020-01770-8
https://doi.org/10.1023/A:1014009426274
https://doi.org/10.1023/A:1014009426274
https://doi.org/10.3389/esss.2021.10042
https://doi.org/10.3389/esss.2021.10042
https://doi.org/10.1190/segam2018-2995341.1
https://doi.org/10.3997/2214-4609.201403044
https://doi.org/10.3390/rs16122084
https://doi.org/10.1016/j.petrol.2018.03.043

	Assessing paleo channel probability for offshore wind farm ground modeling - comparison of multiple-point statistics and se ...
	1 Introduction
	2 Methodology
	2.1 Multiple-point statistics by direct sampling
	2.1.1 Training images and conditioning data
	2.1.2 Direct sampling parameterization

	2.2 Sequential indicator simulation
	2.2.1 Variogram models for SIS

	2.3 Assessment of output quality

	3 Results
	3.1 Multiple-point statistics
	3.2 Sequential indicator simulation
	3.3 Discussion

	4 Conclusions
	CRediT authorship contribution statement
	Funding sources
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	Data availability
	References


