Isatis.neo | Geostatistics made accessible
Isatis.neo is the leading and most comprehensive software solution for geostatistics. Featuring an intuitive user interface, it results from Geovariances’ dual commitment to developing breakthrough technology and making premium geostatistics accessible to more users.
Designed for every business dealing with spatialized data, Isatis.neo exceeds industry standards in geostatistics. The software enables thorough data analysis and visualization, produces high-quality maps and models, and allows you to carry out extensive uncertainty and risk analyses that optimize your decision-making process.
Available in a Standard Edition, Isatis.neo is also offered in two special versions, Petroleum Edition and Mining Edition, to better meet the specific requirements of these two industries. In addition to business-oriented tools, the Petroleum Edition offers a preconfigured workflow for Time-to-Depth Conversion with comprehensive uncertainty analysis.
Improve your performance
Geostatistics can appear daunting if you are not familiar with the approach. This is why we have been working to make Isatis.neo straightforward to use so that you only focus on your geostatistical analysis, not on how to use the tool. Your performance is boosted thanks to its intuitive interface, but also by cutting-edge parallelized algorithms and powerful scripting procedures that allow fast and easy model updating.
Tailor your project to your needs
Isatis.neo provides a complete set of powerful and intuitive statistical and geostatistical tools in a fully flexible package letting you design your process to best address your specific issues. And if you need further analyses, Isatis.neo enables you to write python coding into your batch processes, allowing for a high degree of customization required for optimized workflows.
Make better decisions
Isatis.neo makes you benefit from Geovariances’ technical excellence in geostatistics. The software derives from robust, tried and tested Isatis software and 35 years of know-how in developing geostatistics-based software solutions in partnership with the French Mining School of Paris. With Isatis.neo, you are certain to hold the keys for data and risk-informed decision making.
Go beyond with Machine Learning
With Isatis.neo, you may combine geostatistics with Machine Learning techniques to solve real and complex problems.
Hear from our customers
Discover Isatis.neo at our upcoming events
Resources
-
Application de la géostatistique dans l’analyse de risque géotechnique lié à la liquéfaction du sol (vidéo) | Gestion des Données et Nouvel Environnement numérique en Géotechnique - Journée technique CFMS 15 nov 2022
-
Amélioration de l’estimation des teneurs en alumine d’un gisement de kaolin à l’aide des simulations par bandes tournantes | XVe Journées de géostatistique 2021 - V. Bouchet (Imerys), M.C. Febvey (Geovariances), Hélène Binet (Geovariances), Armand Dubus (Geovariances)
-
Utilisation d’un algorithme de classification par Machine Learning pour la caractérisation géomécanique des sols | CFMS 2020 - par Marie-Cecile Febvey
-
Co-kriging of log ratios: a worked alternative method | Clint Ward, Cliffs, Ute Mueller ECU
-
Local Uncertainty Benchmarking – A coal case study | Written by C. Mawdesley, D. Barry, O. Bertoli and R. Saha
-
3D Modelling of Standard Penetration Test in the Framework of Assessing Liquefaction Risk | P. Masoudi (Geovariances), H. Binet (Geovariances), C. Simon (EDF-DI-TEGGM), B. Pelletier (EDF-DI-TEGGM), C. Faucheux (Geovariances), F. Rambert (Geovariances), Y. Assy (Geovariances) - EAGE GeoTech 2024 Fourth EAGE Workshop on Distributed Fibre Optic Sensing, Apr 2024, Volume 2024, p.1 - 5
-
Plurigaussian conditional simulation (PGS) of the Budenovskoe uranium roll-front deposit, central Kazakhstan: 3D model of the host sedimentary sequence | M. Abzalov, D. Renard - Applied Earth Science. 2023;132(3-4):227-235
-
Assessment of ambient dose equivalent rate distribution patterns in a forested-rugged terrain using field-measured and modeled dose equivalent rates | M. Yasumiishi, P. Masoudi, T. Nishimura, K. Ochi, X. Ye, J. Aldstadt, M. Komissarov - Radiation Measurements, Volume 168, 2023, 106978, ISSN 1350-4487, https://doi.org/10.1016/j.radmeas.2023.106978.
-
A novel geostatistical index of uncertainty for short-term mining plan | G. M. C. Dias, M. M. Rocha & V. M. Silva (2023) - CIM Journal, DOI: 10.1080/19236026.2022.2145077
-
Application de la géostatistique dans l’analyse de risque géotechnique lié à la liquéfaction du sol (slides) | Gestion des Données et Nouvel Environnement numérique en Géotechnique - Journée technique CFMS 15 nov 2022